• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Có bao nhiêu số nguyên \(y\) nhỏ hơn 2020 sao cho tồn tại số thực dương \(x\) thỏa mãn đồng thời các điều kiện \({7^{2 + \sqrt {y + 1} }} – {7^{2x + \sqrt {y + 1} }} \ge 2021.{\log _2}x\) và \({x^2} – \left( {y + 2} \right)x + 2y – 3 \ge 0\).

Ngày 04/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC, HAM SO MU VDC, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên \(y\) nhỏ hơn 2020 sao cho tồn tại số thực dương \(x\) thỏa mãn đồng thời các điều kiện \({7^{2 + \sqrt {y + 1} }} - {7^{2x + \sqrt {y + 1} }} \ge 2021.{\log _2}x\) và \({x^2} - \left( {y + 2} \right)x + 2y - 3 \ge 0\). A. \(6\). B. \(3\). C. \(2016\). D. \(2018\). LỜI GIẢI CHI TIẾT +)Điều kiện: \(\left\{ \begin{array}{l}x … [Đọc thêm...] vềCó bao nhiêu số nguyên \(y\) nhỏ hơn 2020 sao cho tồn tại số thực dương \(x\) thỏa mãn đồng thời các điều kiện \({7^{2 + \sqrt {y + 1} }} – {7^{2x + \sqrt {y + 1} }} \ge 2021.{\log _2}x\) và \({x^2} – \left( {y + 2} \right)x + 2y – 3 \ge 0\).

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 9\) và hai điểm \(M\left( {4; – 4;2} \right)\), \(N\left( {6;0;6} \right)\). Gọi \(E\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho \(EM + EN\) đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu \(\left( S \right)\) tại \(E\).

Ngày 04/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Cuc tri Hinh hoc Oxyz, TN THPT 2021

Câu hỏi: Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và hai điểm \(M\left( {4; - 4;2} \right)\), \(N\left( {6;0;6} \right)\). Gọi \(E\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho \(EM + EN\) đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 9\) và hai điểm \(M\left( {4; – 4;2} \right)\), \(N\left( {6;0;6} \right)\). Gọi \(E\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho \(EM + EN\) đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu \(\left( S \right)\) tại \(E\).

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{2^{{x^2} + 2x + 2}} – {4^{x + 3}}} \right)\left( {{{\log }_2}\left( {{x^3} + 12{x^2} + 45x + 54} \right) – 2} \right) \le 0\)?

Ngày 04/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC, HAM SO MU VDC, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{2^{{x^2} + 2x + 2}} - {4^{x + 3}}} \right)\left( {{{\log }_2}\left( {{x^3} + 12{x^2} + 45x + 54} \right) - 2} \right) \le 0\)? A. \(5\). B. \(6\). C. \(7\). D. \(8\). LỜI GIẢI CHI TIẾT Điều kiện của bất phương trình: \({x^3} + 12{x^2} + 45x + 54 > 0 \Leftrightarrow (x + 6){(x + 3)^2} > 0 … [Đọc thêm...] vềCó bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{2^{{x^2} + 2x + 2}} – {4^{x + 3}}} \right)\left( {{{\log }_2}\left( {{x^3} + 12{x^2} + 45x + 54} \right) – 2} \right) \le 0\)?

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y + 6z – 13 = 0\). Lấy điểm \(M\) trong không gian sao cho từ \(M\) kẻ được ba tiếp tuyến \(MA\), \(MB\), \(MC\) đến mặt cầu \(\left( S \right)\) thỏa mãn \(\widehat {AMB} = 60^\circ \), \(\widehat {BMC} = 90^\circ \), \(\widehat {CMA} = 120^\circ \) (\(A\), \(B\), \(C\) là các tiếp điểm). Khi đó đoạn thẳng \(OM\)có độ nhỏ nhất bằng

Ngày 04/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Cuc tri Hinh hoc Oxyz, TN THPT 2021

Câu hỏi: Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 6z - 13 = 0\). Lấy điểm \(M\) trong không gian sao cho từ \(M\) kẻ được ba tiếp tuyến \(MA\), \(MB\), \(MC\) đến mặt cầu \(\left( S \right)\) thỏa mãn \(\widehat {AMB} = 60^\circ \), \(\widehat {BMC} = 90^\circ \), \(\widehat {CMA} = 120^\circ \) (\(A\), \(B\), \(C\) là các … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y + 6z – 13 = 0\). Lấy điểm \(M\) trong không gian sao cho từ \(M\) kẻ được ba tiếp tuyến \(MA\), \(MB\), \(MC\) đến mặt cầu \(\left( S \right)\) thỏa mãn \(\widehat {AMB} = 60^\circ \), \(\widehat {BMC} = 90^\circ \), \(\widehat {CMA} = 120^\circ \) (\(A\), \(B\), \(C\) là các tiếp điểm). Khi đó đoạn thẳng \(OM\)có độ nhỏ nhất bằng

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\left( {\frac{1}{3}} \right)}^{{x^2} – 4x – 12}} – 1} \right]\left( {{3^{2 – {{\log }_3}x}} – 81x} \right) \le 0\)?

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Logarit và hàm số lôgarit Tag với:Phuong trinh logarit co nghiem, Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\left( {\frac{1}{3}} \right)}^{{x^2} - 4x - 12}} - 1} \right]\left( {{3^{2 - {{\log }_3}x}} - 81x} \right) \le 0\)? A. Vô số.. B. \(6\). C. \(5\). D. \(7\). LỜI GIẢI CHI TIẾT Điều kiện: \(x > 0\). Xét \(f\left( x \right) = \left[ {{{\left( {\frac{1}{3}} \right)}^{{x^2} - 4x - 12}} - 1} … [Đọc thêm...] vềCó bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\left( {\frac{1}{3}} \right)}^{{x^2} – 4x – 12}} – 1} \right]\left( {{3^{2 – {{\log }_3}x}} – 81x} \right) \le 0\)?

. Trong không gian \(Oxyz\), cho các điểm \(A\left( {0;0\,;\,3} \right)\) và \(B\left( {2; – 3\,;\, – 5} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa đường tròn giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 3} \right)^2} = 25\) với \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} – 2x – 2y – 14 = 0\). \(M\), \(N\) là hai điểm thuộc \(\left( P \right)\) sao cho\(MN = 1\). Giá trị nhỏ nhất của \(AM + BN\)là

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Cuc tri Hinh hoc Oxyz, TN THPT 2021

Câu hỏi: . Trong không gian \(Oxyz\), cho các điểm \(A\left( {0;0\,;\,3} \right)\) và \(B\left( {2; - 3\,;\, - 5} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa đường tròn giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 25\) với \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} - 2x … [Đọc thêm...] về. Trong không gian \(Oxyz\), cho các điểm \(A\left( {0;0\,;\,3} \right)\) và \(B\left( {2; – 3\,;\, – 5} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa đường tròn giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 3} \right)^2} = 25\) với \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} – 2x – 2y – 14 = 0\). \(M\), \(N\) là hai điểm thuộc \(\left( P \right)\) sao cho\(MN = 1\). Giá trị nhỏ nhất của \(AM + BN\)là

Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Cực trị của hàm số Tag với:TN THPT 2021, Trắc nghiệm cực trị Vận dụng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là A. \(8\). B. \(6\). C. \(4\). D. \(2\). LỜI GIẢI CHI TIẾT Ta có\(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1 \Leftrightarrow … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là

Trong không gian Oxyz cho đường thẳng \(d:\,\,\frac{{x – 1}}{1} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 5}}{2}\) và mặt phẳng\(\left( P \right):\,\,2x + y + z – 3 = 0\). Đường thẳng \(\Delta \) đi qua điểm \(A\left( {2; – 1;3} \right)\), cắt đường thẳng \(d\) và tạo với mặt phẳng \(\left( P \right)\) góc \({30^0}\) có phương trình:

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Cuc tri Hinh hoc Oxyz, TN THPT 2021

Câu hỏi: Trong không gian Oxyz cho đường thẳng \(d:\,\,\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 5}}{2}\) và mặt phẳng\(\left( P \right):\,\,2x + y + z - 3 = 0\). Đường thẳng \(\Delta \) đi qua điểm \(A\left( {2; - 1;3} \right)\), cắt đường thẳng \(d\) và tạo với mặt phẳng \(\left( P \right)\) góc \({30^0}\) có phương trình: A. \(\frac{{x + 2}}{{22}} = … [Đọc thêm...] vềTrong không gian Oxyz cho đường thẳng \(d:\,\,\frac{{x – 1}}{1} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 5}}{2}\) và mặt phẳng\(\left( P \right):\,\,2x + y + z – 3 = 0\). Đường thẳng \(\Delta \) đi qua điểm \(A\left( {2; – 1;3} \right)\), cắt đường thẳng \(d\) và tạo với mặt phẳng \(\left( P \right)\) góc \({30^0}\) có phương trình:

Cho khối hộp chữ nhật \(ABCD.A’B’C’D’\), biết \(AB = a\), \(AA’ = \frac{{3a}}{2}\) và góc giữa 2 mặt phẳng \(\left( {A’BD} \right)\)và \(\left( {ABCD} \right)\) bằng \({60^0}\). Thể tích của khối hộp chữ nhật bằng

Ngày 03/08/2021 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:TN THPT 2021, Trắc nghiệm thể tích hình lăng trụ

Câu hỏi: Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\), biết \(AB = a\), \(AA' = \frac{{3a}}{2}\) và góc giữa 2 mặt phẳng \(\left( {A'BD} \right)\)và \(\left( {ABCD} \right)\) bằng \({60^0}\). Thể tích của khối hộp chữ nhật bằng A. \(\frac{{3{a^3}\sqrt {21} }}{{14}}\). B. \(\frac{{3{a^3}\sqrt 3 }}{4}\). C. \(\frac{{{a^3}\sqrt 3 }}{2}\). D. \(\frac{{3{a^3}\sqrt 3 … [Đọc thêm...] vềCho khối hộp chữ nhật \(ABCD.A’B’C’D’\), biết \(AB = a\), \(AA’ = \frac{{3a}}{2}\) và góc giữa 2 mặt phẳng \(\left( {A’BD} \right)\)và \(\left( {ABCD} \right)\) bằng \({60^0}\). Thể tích của khối hộp chữ nhật bằng

Cho hàm số \(f\left( x \right)\) thỏa mãn \( – xf’\left( x \right).\ln x + f\left( x \right) = 2{x^2}{f^2}\left( x \right),\,\,\forall x \in \left( {1; + \infty } \right)\), \(f\left( x \right) > 0,\forall x \in \left( {1; + \infty } \right)\)và \(f\left( {\rm{e}} \right) = \frac{1}{{{{\rm{e}}^2}}}\). Tính diện tích \(S\)hình phẳng giới hạn bởi đồ thị \(y = xf\left( x \right),y = 0,x = e,x = {e^2}\).

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Cho hàm số \(f\left( x \right)\) thỏa mãn \( - xf'\left( x \right).\ln x + f\left( x \right) = 2{x^2}{f^2}\left( x \right),\,\,\forall x \in \left( {1; + \infty } \right)\), \(f\left( x \right) > 0,\forall x \in \left( {1; + \infty } \right)\)và \(f\left( {\rm{e}} \right) = \frac{1}{{{{\rm{e}}^2}}}\). Tính diện tích \(S\)hình phẳng giới hạn bởi đồ thị \(y = … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) thỏa mãn \( – xf’\left( x \right).\ln x + f\left( x \right) = 2{x^2}{f^2}\left( x \right),\,\,\forall x \in \left( {1; + \infty } \right)\), \(f\left( x \right) > 0,\forall x \in \left( {1; + \infty } \right)\)và \(f\left( {\rm{e}} \right) = \frac{1}{{{{\rm{e}}^2}}}\). Tính diện tích \(S\)hình phẳng giới hạn bởi đồ thị \(y = xf\left( x \right),y = 0,x = e,x = {e^2}\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 1065
  • Trang 1066
  • Trang 1067
  • Trang 1068
  • Trang 1069
  • Interim pages omitted …
  • Trang 1758
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.