Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x - 1) - {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là: A. \(0\). B. \(2\). C. \(3\). D. \(1\). Lời giải: Điều kiện \(2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}\). PT\( \Leftrightarrow 2{\log _3}(2x - 1) = {\log _3}3 + {\log _3}({x^2} + 2)\) \( \Leftrightarrow {\log _3}{(2x - 1)^2} … [Đọc thêm...] vềGọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:
Trắc nghiệm Phương trình và bất phương trình Logarit
Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:
Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x - 1) + {\log _2}{(x - 5)^2} = 4\)là: A. \(9\) B. \(6 + 2\sqrt 2 \). C.\(6 - 2\sqrt 2 \) . D. \(6 + 2\sqrt 3 \) Lời giải: Điều kiện \(\left\{ \begin{array}{l}x > 1\\x \ne 5\end{array} \right.\). PT\( \Leftrightarrow 2{\log _2}(x - 1) + 2{\log _2}\left| {x - 5} \right| = 4\) \( … [Đọc thêm...] vềTổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:
Số nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là
Số nghiệm của phương trình \({\log _3}\left( {4x - {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x - 1} \right) = 1\) là A. \(1\). B. \(2\). C. \(0\). D. \(3\). Lời giải: Điều kiện:\(\left\{ \begin{array}{l}4x - {x^2} > 0\\\frac{2}{3}x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x < 4\\x > … [Đọc thêm...] vềSố nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là
Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là
Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} - 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là A. \(2\). B. \(7\). C. \(5\). D. Vô số. Lời giải: Điều kiện:\({x^2} - 6x + 5 > 0 \Leftrightarrow \left[ \begin{array}{l}x < 1\\x > 5\end{array} \right.\) Ta có: \({\log _5}\left( {{x^2} - 6x + 5} \right) \le 1 … [Đọc thêm...] vềTập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là
Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là
Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x - 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là A. \(S = \left( {4;\, + \infty } \right)\). B. \(S = \left( {2;\;4} \right)\). C. \(S = \left( { - 5;\;4} \right)\). D. \(S = \left( { - \infty ;\; - 5} \right) \cup \left( {4;\; + \infty } … [Đọc thêm...] vềTập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là
. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là
. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) + {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là A. \(\left[ {1;\, + \infty } \right)\). B. \(\left[ { - 1;\, + \infty } \right)\). C. \(\left( {1;\, + \infty } \right)\). D. \(\left( { - 3;\, + \infty } \right)\). Lời giải: Điều kiện: \(x > … [Đọc thêm...] về. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là
: Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).
: Tập nghiệm của bất phương trình \(\log _2^2x - 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\). A. \(8\) B. \( - 8\) C. \(7\) D. \({\rm{16}}\) Lời giải: Điều kiện \(x > 0\). Đặt \(t = {\log _2}x\) thì bất phương trình trở thành \({t^2} - 5t + 6 \le 0 \Leftrightarrow 2 \le t \le 3\). Thay \(t = {\log _2}x\) ta được \(2 \le … [Đọc thêm...] về: Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).
Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là
Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) - 23{\log _2}x + 7 < 0\) là A. Vô số. B. \(5.\) C. \(3.\) D. \(4.\) Lời giải: Điều kiện: \(x > 0\). \(\log _{\sqrt 2 }^2\left( {2x} \right) - 23{\log _2}x + 7 < 0\) \( \Leftrightarrow {\left[ {{{\log }_{{2^{\frac{1}{2}}}}}\left( {2x} \right)} \right]^2} - 23{\log _2}x … [Đọc thêm...] vềSố nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là
Số nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) – {\log _2}4x = – 2\) là:
Số nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) - {\log _2}4x = - 2\) là: A. 0. B. 1. C. 2. D. 3. Lời giải: \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) - {\log _2}4x = - 2\,(1)\) Điều kiện: \(x > 0\) Khi đó: \((1) \Leftrightarrow {\left( {{{\log }_{\frac{1}{2}}}\left( {\frac{8}{{{x^2}}}} … [Đọc thêm...] vềSố nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) – {\log _2}4x = – 2\) là:
Cho phương trình \({\log _2}\left( {{9^x} + {{15.3}^x} – 15} \right) + {\log _2}\frac{1}{{{{\left( {{{4.3}^x} – 3} \right)}^2}}} = 0\). Số nghiệm của phương trình là:
Cho phương trình \({\log _2}\left( {{9^x} + {{15.3}^x} - 15} \right) + {\log _2}\frac{1}{{{{\left( {{{4.3}^x} - 3} \right)}^2}}} = 0\). Số nghiệm của phương trình là: A. 1. B. 2. C. 3. D. 4. Lời giải: \({\log _2}\left( {{9^x} + {{15.3}^x} - 15} \right) = - {\log _2}\frac{1}{{{{\left( {{{4.3}^x} - 3} \right)}^2}}} \Leftrightarrow {\log _2}\left( {{3^{2x}} + … [Đọc thêm...] vềCho phương trình \({\log _2}\left( {{9^x} + {{15.3}^x} – 15} \right) + {\log _2}\frac{1}{{{{\left( {{{4.3}^x} – 3} \right)}^2}}} = 0\). Số nghiệm của phương trình là: