Có bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} - 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} - 1} \right)\)? A.\(12\) . B. \(13\). C. \(10\). D. \(8\). Lời giải: Ta có \({2^m}\left( {{2^{x + 3}} - 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} - 1} \right)\) \( \Leftrightarrow … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} – 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} – 1} \right)\)?
Phuong trinh logarit
Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\)thỏa mãn \(0 < y < 2023\) và
\({3^x} + 3x – 6 = 9y + {\log _3}{y^3}\).
Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\)thỏa mãn \(0 < y < 2023\) và \({3^x} + 3x - 6 = 9y + {\log _3}{y^3}\). A. \(2020\). B.\(9\) . C. \(7.\) D. \(8\). Lời giải: Ta có: \({3^x} + 3x - 6 = 9y + {\log _3}{y^3} \Leftrightarrow {3^x} + 3\left( {x - 2} \right) = 9y + 3{\log _3}y\) \( \Leftrightarrow \)\({3^x} + 3\left( {x - 2} \right) = … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \(\left( {x;y} \right)\)thỏa mãn \(0 < y < 2023\) và
\({3^x} + 3x – 6 = 9y + {\log _3}{y^3}\).
Số nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 – {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} – 1} \right)\).
Số nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 - {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} - 1} \right)\). A. \(1\). B. \(2\). C. \(3\). D. \(4\). Lời giải: ⬥ Ta có \(\begin{array}{l}{2^{2x + 1}}\left( {1 - {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} - 1} \right)\\ \Leftrightarrow {2^{2x + 1}} - {2^{3{x^2} + 2x + 1}} = … [Đọc thêm...] vềSố nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 – {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} – 1} \right)\).
Tập nghiệm của phương trình \({\log _2}\frac{{6x – 3}}{{24{x^2}}} = 8{x^2} – 2x + 1\) là
Tập nghiệm của phương trình \({\log _2}\frac{{6x - 3}}{{24{x^2}}} = 8{x^2} - 2x + 1\) là A. \(\left\{ {1\,;\,4} \right\}\). B. \(\emptyset \). C. \(\left\{ {1 \pm \sqrt 2 } \right\}\). D. Vô số nghiệm. Lời giải: ⬥ Ta có: \({\log _2}\frac{{6x - 3}}{{24{x^2}}} = 8{x^2} - 2x + 1\), điều kiện: \(\left\{ \begin{array}{l}6x - 3 > 0\\x \ne 0\end{array} \right. … [Đọc thêm...] vềTập nghiệm của phương trình \({\log _2}\frac{{6x – 3}}{{24{x^2}}} = 8{x^2} – 2x + 1\) là
Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?
Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x - 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên? A. 1. B. 2022. C. 2021. D. 4. Lời giải: Ta có : \({\log _2}\left( {2x + 2} \right) + x - 3y = {8^y}\) \(\begin{array}{l} \Leftrightarrow x + 1 + {\log _2}\left( {x + 1} \right) = {8^y} + 3y\\ … [Đọc thêm...] vềCho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?
Có bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y – 1} \right) = 2 – {\log _2}{x^x}\)
Có bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y - 1} \right) = 2 - {\log _2}{x^x}\) A. 12. B. 9. C. 10. D. 11. Lời giải: Ta có: \(x\left( {{2^y} + y - 1} \right) = 2 - {\log _2}{x^x} \Leftrightarrow x{\log _2}x + x\left( {{2^y} + y - 1} \right) = 2.\) Đặt \(t = {\log _2}x \Leftrightarrow x = … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y – 1} \right) = 2 – {\log _2}{x^x}\)
. Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và
\(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\).
. Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và \(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} - 2\). A. \(2\). B. \(3\). C. \(4\). D. \(5\). Lời giải: Ta có \(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} - 2 \Leftrightarrow {3.9^y} + 6y = x + 3{\log _3}(x + 1) - 2\) \( \Leftrightarrow … [Đọc thêm...] về. Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và
\(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\).
Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)
Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\) A. 2023. B. 2024. C. 0. D. 2. Lời giải: Ta có \({\log _3}\left( {9x + 18} \right) + x = 3y + {3^{3y}} \Leftrightarrow {\log _3}\left[ {9\left( {x + 2} \right)} \right] + x = 3y + {3^{3y}}\) \( \Leftrightarrow 2 + … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương. A. 2. B. 3. C. 1. D. 0. Lời giải: \(\begin{array}{l}{6^x} + 2mx = m{2^x} + 2x{.3^x} \Leftrightarrow {2^x}{.3^x} - 2x{.3^x} = m{.2^x} - 2xm \Leftrightarrow {3^x}\left( {{2^x} - 2x} \right) - m\left( {{2^x} - … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.
Phương trình \({2^{23{x^3}}}{.2^x} – {1024^{{x^2}}} + 23{x^3} = 10{x^2} – x\) có tổng các nghiệm gần nhất với số nào dưới đây
Phương trình \({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\) có tổng các nghiệm gần nhất với số nào dưới đây A. \(0,35.\) B. \(0,40.\) C. \(0,50.\) D. \(0,45.\) Lời giải: Ta có \({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x \Leftrightarrow {2^{23{x^3} + x}} + 23{x^3} + x = {2^{10{x^2}}} + 10{x^2}(*)\) Xét hàm số \(f\left( t … [Đọc thêm...] vềPhương trình \({2^{23{x^3}}}{.2^x} – {1024^{{x^2}}} + 23{x^3} = 10{x^2} – x\) có tổng các nghiệm gần nhất với số nào dưới đây