• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Phương trình và bất phương trình Logarit

Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x - 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên? A. 1. B. 2022. C. 2021. D. 4. Lời giải: Ta có : \({\log _2}\left( {2x + 2} \right) + x - 3y = {8^y}\) \(\begin{array}{l} \Leftrightarrow x + 1 + {\log _2}\left( {x + 1} \right) = {8^y} + 3y\\ … [Đọc thêm...] vềCho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

Có bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y – 1} \right) = 2 – {\log _2}{x^x}\)

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Có bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y - 1} \right) = 2 - {\log _2}{x^x}\) A. 12. B. 9. C. 10. D. 11. Lời giải: Ta có: \(x\left( {{2^y} + y - 1} \right) = 2 - {\log _2}{x^x} \Leftrightarrow x{\log _2}x + x\left( {{2^y} + y - 1} \right) = 2.\) Đặt \(t = {\log _2}x \Leftrightarrow x = … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y – 1} \right) = 2 – {\log _2}{x^x}\)

. Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và

\(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\).

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

. Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và \(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} - 2\). A. \(2\). B. \(3\). C. \(4\). D. \(5\). Lời giải: Ta có \(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} - 2 \Leftrightarrow {3.9^y} + 6y = x + 3{\log _3}(x + 1) - 2\) \( \Leftrightarrow … [Đọc thêm...] về. Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và

\(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\).

Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\) A. 2023. B. 2024. C. 0. D. 2. Lời giải: Ta có \({\log _3}\left( {9x + 18} \right) + x = 3y + {3^{3y}} \Leftrightarrow {\log _3}\left[ {9\left( {x + 2} \right)} \right] + x = 3y + {3^{3y}}\) \( \Leftrightarrow 2 + … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương. A. 2. B. 3. C. 1. D. 0. Lời giải: \(\begin{array}{l}{6^x} + 2mx = m{2^x} + 2x{.3^x} \Leftrightarrow {2^x}{.3^x} - 2x{.3^x} = m{.2^x} - 2xm \Leftrightarrow {3^x}\left( {{2^x} - 2x} \right) - m\left( {{2^x} - … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

Có bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} – 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} – 1} \right)\)?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Có bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} - 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} - 1} \right)\)? A.\(12\) . B. \(13\). C. \(10\). D. \(8\). Lời giải: Ta có \({2^m}\left( {{2^{x + 3}} - 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} - 1} \right)\) \( \Leftrightarrow … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} – 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} – 1} \right)\)?

Gọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { – \infty ;\frac{{ – 16}}{{27}}} \right)\) sao cho phương trình

\({4.4^{{x^2} + 2x}} + \left( {12m – 12} \right){6^{{x^2} + 2x}} – \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Gọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { - \infty ;\frac{{ - 16}}{{27}}} \right)\) sao cho phương trình \({4.4^{{x^2} + 2x}} + \left( {12m - 12} \right){6^{{x^2} + 2x}} - \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng A.\(\frac{{ - 115}}{{81}}\) . B. \(\frac{{ - 96}}{{81}}\). C. … [Đọc thêm...] vềGọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { – \infty ;\frac{{ – 16}}{{27}}} \right)\) sao cho phương trình

\({4.4^{{x^2} + 2x}} + \left( {12m – 12} \right){6^{{x^2} + 2x}} – \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} - 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} - m} = 0\) có \(2\) nghiệm nguyên. A. \(1012\). B. \(1011\). C. \(1\). D. \(1010\). Lời giải: Đkxđ: \(\left\{ \begin{array}{l}{x^2} > 0\\{\log _3}{x^2} - m \ge 0\end{array} \right. … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)? A. \(59\). B. \(58\). C. \(116\). D. \(115\). Lời giải: Bất phương trình đã cho tương đương \({\log _3}(x + y) - {\log _4}\left( {{x^2} + y} \right) \le 0\) Xét hàm số \(f\left( y … [Đọc thêm...] vềCó bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)?

Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b - 1} \right)\left( {a{{\log }_2}b - 6} \right) < 0\)? A. \(4\). B. \(3\). C. \(5\). D. \(7\). Lời giải: Theo giả thiết, ta có 2 trường hợp sau TH1: \(\left\{ \begin{array}{l}{\log _5}b - 1 < 0\\a{\log _2}b - 6 > 0\end{array} … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Interim pages omitted …
  • Trang 25
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.