• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Phương trình và bất phương trình Logarit

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2023\,;2023} \right)\) để phương trình \({3.6^x} – \left( {7m – 48} \right).\sqrt {{6^x}} + 2{m^2} – 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\)

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 2023\,;2023} \right)\) để phương trình \({3.6^x} - \left( {7m - 48} \right).\sqrt {{6^x}} + 2{m^2} - 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\) A. \(2023\). B. \(4036\). C. \(2022\). D. \(2014\). Lời giải: • Xét phương trình: \({3.6^x} - \left( … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2023\,;2023} \right)\) để phương trình \({3.6^x} – \left( {7m – 48} \right).\sqrt {{6^x}} + 2{m^2} – 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\)

Tìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\).

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Tìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\). A. \(m \in \left( {3;4} \right)\). B. \(m \in \left( {4;5} \right)\). C. \(m \in \left( {5;6} \right)\). D. \(m \in \left( {6;7} \right)\). Lời giải: + Với \(a > 1\) ta có \(\mathop {\lim }\limits_{x \to 0} \frac{{{a^x} - 1}}{x} = \mathop {\lim … [Đọc thêm...] vềTìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\).

Cho \(0 \le x \le 2020\) và \({\log _9}(9x + 18) + x – 2y = {9^y}\).Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Cho \(0 \le x \le 2020\) và \({\log _9}(9x + 18) + x - 2y = {9^y}\).Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên? A. \(2019\). B. \(2018\). C. \(1\). D. \(3\). Lời giải: Do \(0 \le x \le 2020\) nên \({\log _3}(9x + 18)\) luôn có nghĩa. Ta có \({\log _9}(9x + 18) + x - 2y = {9^y}\)\( \Leftrightarrow {\log _3}(x + 2) + x + 2 = 2y + … [Đọc thêm...] vềCho \(0 \le x \le 2020\) và \({\log _9}(9x + 18) + x – 2y = {9^y}\).Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên?

Có bao nhiêu số nguyên x thỏa mãn \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} – 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{{x^2} - 16}}{{27}}\)?

Ngày 11/03/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Pt mu va Logarit VDC

Có bao nhiêu số nguyên \(x\) thỏa mãn \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{{x^2} - 16}}{{27}}\) ? A. 193.  B. 92.  C. 186.  D. 184. Lời giải: Chọn D TXĐ: \(D = \left( { - \infty ; - 4} \right) \cup \left( {4; + \infty } \right).\) Ta có: \(\begin{array}{l}{\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} … [Đọc thêm...] vềCó bao nhiêu số nguyên x thỏa mãn \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} – 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{{x^2} - 16}}{{27}}\)?

Tích tất cả các nghiệm của phương trình \({\ln ^2}x + 2\ln x – 3 = 0\) bằng

Ngày 06/03/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Trắc nghiệm PT – BPT logarit PP đưa về cùng cơ số

Tích tất cả các nghiệm của phương trình \({\ln ^2}x + 2\ln x - 3 = 0\) bằng A. \(\frac{1}{{{e^3}}}.\)  B. \( - 2\) .  C. \( - 3.\)  D. \(\frac{1}{{{e^2}}}.\) Lời giải: Chọn D Ta có: \({\ln ^2}x + 2\ln x - 3 = 0 \Leftrightarrow \left\{ \begin{array}{l}x > 0\\\left( {\ln x - 1} \right)\left( {\ln x + 3} \right)\end{array} \right. … [Đọc thêm...] vềTích tất cả các nghiệm của phương trình \({\ln ^2}x + 2\ln x – 3 = 0\) bằng

Tính tổng các nghiệm của phương trình \({2021^{2021x}} + {2021^{x + 1}}.x = {2021^{{x^2}}} + {2021^x}.{x^2}\).

Ngày 26/02/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, VDC Toan 2023

Tính tổng các nghiệm của phương trình \({2021^{2021x}} + {2021^{x + 1}}.x = {2021^{{x^2}}} + {2021^x}.{x^2}\). A. \(2.\) B. \(2021.\) C. \(2022.\) D. \(2023.\) Lời giải Điều kiện: \(x \in \mathbb{R}\) Chia 2 vế của phương trình cho \({2021^x} > 0\), ta được: \({2021^{2020x}} + 2021x = {2021^{{x^2} - x}} + {x^2}\) … [Đọc thêm...] vềTính tổng các nghiệm của phương trình \({2021^{2021x}} + {2021^{x + 1}}.x = {2021^{{x^2}}} + {2021^x}.{x^2}\).

Số giá trị nguyên của tham số\(m\) để phương trình

\(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} = m\left( {{{\log }_4}{x^2} – 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là:

Ngày 21/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: Số giá trị nguyên của tham số\(m\) để phương trình \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} - 7} = m\left( {{{\log }_4}{x^2} - 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là: A. vô số. B. \(4\). C. \(3\). D. \(1\). Lời giải Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\{x^2} > 0\\\log _2^2x + … [Đọc thêm...] về

Số giá trị nguyên của tham số\(m\) để phương trình

\(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} = m\left( {{{\log }_4}{x^2} – 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là:

Có bao nhiêu giá trị của nguyên của tham số \(m\) để phương trình

\(\log _3^23x + {\log _3}x + m – 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {0\,;\,1} \right)\).

Ngày 21/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: Có bao nhiêu giá trị của nguyên của tham số \(m\) để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {0\,;\,1} \right)\). A. \(0\). B. \(1\). C. \(2\). D. \(3\). Lời giải Phương trình đã cho tương đương với: \(\log _3^23x + {\log _3}3x + m - 2 = 0\) Đặt \(t = {\log _3}3x\), phương trình có … [Đọc thêm...] về

Có bao nhiêu giá trị của nguyên của tham số \(m\) để phương trình

\(\log _3^23x + {\log _3}x + m – 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {0\,;\,1} \right)\).

. Số nghiệm của phương trình \({\log _3}\left| {{x^2} – x} \right| = {\log _5}\left( {{x^2} – x + 2} \right)\) là

Ngày 21/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: . Số nghiệm của phương trình \({\log _3}\left| {{x^2} - x} \right| = {\log _5}\left( {{x^2} - x + 2} \right)\) là A. \(0\). B. \(4\). C. \(1\). D. \(2\). Lời giải Điều kiện : \(x \ne 0,x \ne 1\). Đặt \(t = {x^2} - x\), ta được phương trình \({\log _3}\left| t \right| = {\log _5}\left( {t + 2} \right)\). Đặt \({\log _3}\left| t \right| = {\log … [Đọc thêm...] về

. Số nghiệm của phương trình \({\log _3}\left| {{x^2} – x} \right| = {\log _5}\left( {{x^2} – x + 2} \right)\) là

. Số nghiệm của phương trình \({\log _9}{\left( {x – 2} \right)^2} + 1 = {\log _{\sqrt 3 }}\sqrt {4 – x} + {\log _{27}}{\left( {x + 4} \right)^3}\) là

Ngày 21/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: . Số nghiệm của phương trình \({\log _9}{\left( {x - 2} \right)^2} + 1 = {\log _{\sqrt 3 }}\sqrt {4 - x} + {\log _{27}}{\left( {x + 4} \right)^3}\) là A. \(4\). B. \(1\). C. \(3\). D. \(2\). Lời giải Điều kiện xác định: \(\left\{ \begin{array}{l}{\left( {x - 2} \right)^2} > 0\\4 - x > 0\\x + 4 > 0\end{array} \right. \Leftrightarrow \left\{ … [Đọc thêm...] về

. Số nghiệm của phương trình \({\log _9}{\left( {x – 2} \right)^2} + 1 = {\log _{\sqrt 3 }}\sqrt {4 – x} + {\log _{27}}{\left( {x + 4} \right)^3}\) là

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Interim pages omitted …
  • Trang 25
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.