Có bao nhiêu giá trị nguyên của tham số thực \(m\) để phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} - {\log _{\frac{1}{5}}}x + 1 - 3m = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right)\). A. 0. B. 1. C. 2. D. 3. Lời giải: Xét phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} - {\log _{\frac{1}{5}}}x + 1 - 3m = 0 \Leftrightarrow … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số thực \(m\) để phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} – {\log _{\frac{1}{5}}}x + 1 – 3m = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right)\).
Trắc nghiệm Phương trình và bất phương trình Logarit
Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).
Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x - 5{\log _2}x + 2m - 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\). A. \(m = 9\). B. \(m = 3\). C. không tồn tại. D. \(m = 6\). Lời giải: \(\log _2^2x - 5{\log _2}x + 2m - 6 = 0\;\left( 1 \right)\) Điều kiện: \(x > … [Đọc thêm...] vềTìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).
Tập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { – 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x – \sqrt {{x^2} – 4} } \right).{\log _5}\left( {x – \sqrt {{x^2} – 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} – 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là
Tập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { - 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x - \sqrt {{x^2} - 4} } \right).{\log _5}\left( {x - \sqrt {{x^2} - 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} - 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là A. \(4044\). B. \(2023\). C. … [Đọc thêm...] vềTập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { – 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x – \sqrt {{x^2} – 4} } \right).{\log _5}\left( {x – \sqrt {{x^2} – 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} – 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là
Tìm tham số \(m\) để phương trình \({\log _{\sqrt {2023} }}\left( {x – 2} \right) = {\log _{2023}}\left( {mx} \right)\) có nghiệm thực duy nhất.
Tìm tham số \(m\) để phương trình \({\log _{\sqrt {2023} }}\left( {x - 2} \right) = {\log _{2023}}\left( {mx} \right)\) có nghiệm thực duy nhất. A. \(1 < m < 2\). B. \(m > 1\). C. \(m < 2\). D. \(m > 0\). Lời giải: Điều kiện \(\left\{ \begin{array}{l}x - 2 > 0\\mx > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 2\\m … [Đọc thêm...] vềTìm tham số \(m\) để phương trình \({\log _{\sqrt {2023} }}\left( {x – 2} \right) = {\log _{2023}}\left( {mx} \right)\) có nghiệm thực duy nhất.
Giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 4{\log _2}x + m + 1 = 0\left( 1 \right)\) có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn \({\left( {{x_1} – {x_2}} \right)^2} + 3{x_1}{x_2} = 84\) thuộc khoảng nào sau đây
Giá trị thực của tham số \(m\) để phương trình \(\log _2^2x - 4{\log _2}x + m + 1 = 0\left( 1 \right)\) có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn \({\left( {{x_1} - {x_2}} \right)^2} + 3{x_1}{x_2} = 84\) thuộc khoảng nào sau đây A. \(\left( {1;3} \right)\). B. \(\left( {5;7} \right)\). C. \(\left( {3;5} \right)\). D. \(\left( { - 1;1} \right)\). Lời … [Đọc thêm...] vềGiá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 4{\log _2}x + m + 1 = 0\left( 1 \right)\) có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn \({\left( {{x_1} – {x_2}} \right)^2} + 3{x_1}{x_2} = 84\) thuộc khoảng nào sau đây
Phương trình \({{\rm{e}}^x} – {{\rm{e}}^{\sqrt {2x + 1} }} = 1 – {x^2} + 2\sqrt {2x + 1} \) có nghiệm thuộc khoảng nào
Phương trình \({{\rm{e}}^x} - {{\rm{e}}^{\sqrt {2x + 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \) có nghiệm thuộc khoảng nào A. \(\left( {\frac{3}{2};2} \right)\). B. \(\left( {1;\frac{3}{2}} \right)\). C. \(\left( {\frac{1}{2};1} \right)\). D. \(\left( {2;\frac{5}{2}} \right)\). Lời giải: Điều kiện: \(x \ge - \frac{1}{2}\). Ta có \({{\rm{e}}^x} - … [Đọc thêm...] vềPhương trình \({{\rm{e}}^x} – {{\rm{e}}^{\sqrt {2x + 1} }} = 1 – {x^2} + 2\sqrt {2x + 1} \) có nghiệm thuộc khoảng nào
Phương trình \({2^{23{x^3}}}{.2^x} – {1024^{{x^2}}} + 23{x^3} = 10{x^2} – x\) có tổng các nghiệm gần nhất với số nào dưới đây
Phương trình \({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\) có tổng các nghiệm gần nhất với số nào dưới đây A. \(0,35.\) B. \(0,40.\) C. \(0,50.\) D. \(0,45.\) Lời giải: Ta có \({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x \Leftrightarrow {2^{23{x^3} + x}} + 23{x^3} + x = {2^{10{x^2}}} + 10{x^2}(*)\) Xét hàm số \(f\left( t … [Đọc thêm...] vềPhương trình \({2^{23{x^3}}}{.2^x} – {1024^{{x^2}}} + 23{x^3} = 10{x^2} – x\) có tổng các nghiệm gần nhất với số nào dưới đây
Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\)thỏa mãn \(0 < y < 2023\) và
\({3^x} + 3x – 6 = 9y + {\log _3}{y^3}\).
Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\)thỏa mãn \(0 < y < 2023\) và \({3^x} + 3x - 6 = 9y + {\log _3}{y^3}\). A. \(2020\). B.\(9\) . C. \(7.\) D. \(8\). Lời giải: Ta có: \({3^x} + 3x - 6 = 9y + {\log _3}{y^3} \Leftrightarrow {3^x} + 3\left( {x - 2} \right) = 9y + 3{\log _3}y\) \( \Leftrightarrow \)\({3^x} + 3\left( {x - 2} \right) = … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \(\left( {x;y} \right)\)thỏa mãn \(0 < y < 2023\) và
\({3^x} + 3x – 6 = 9y + {\log _3}{y^3}\).
Số nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 – {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} – 1} \right)\).
Số nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 - {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} - 1} \right)\). A. \(1\). B. \(2\). C. \(3\). D. \(4\). Lời giải: ⬥ Ta có \(\begin{array}{l}{2^{2x + 1}}\left( {1 - {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} - 1} \right)\\ \Leftrightarrow {2^{2x + 1}} - {2^{3{x^2} + 2x + 1}} = … [Đọc thêm...] vềSố nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 – {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} – 1} \right)\).
Tập nghiệm của phương trình \({\log _2}\frac{{6x – 3}}{{24{x^2}}} = 8{x^2} – 2x + 1\) là
Tập nghiệm của phương trình \({\log _2}\frac{{6x - 3}}{{24{x^2}}} = 8{x^2} - 2x + 1\) là A. \(\left\{ {1\,;\,4} \right\}\). B. \(\emptyset \). C. \(\left\{ {1 \pm \sqrt 2 } \right\}\). D. Vô số nghiệm. Lời giải: ⬥ Ta có: \({\log _2}\frac{{6x - 3}}{{24{x^2}}} = 8{x^2} - 2x + 1\), điều kiện: \(\left\{ \begin{array}{l}6x - 3 > 0\\x \ne 0\end{array} \right. … [Đọc thêm...] vềTập nghiệm của phương trình \({\log _2}\frac{{6x – 3}}{{24{x^2}}} = 8{x^2} – 2x + 1\) là