• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Phương trình và bất phương trình Logarit / Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

A. 1.

B. 2022.

C. 2021.

D. 4.

Lời giải:

Ta có : \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\)

\(\begin{array}{l} \Leftrightarrow x + 1 + {\log _2}\left( {x + 1} \right) = {8^y} + 3y\\ \Leftrightarrow {2^{{{\log }_2}\left( {x + 1} \right)}} + {\log _2}\left( {x + 1} \right) + = {2^{3y}} + 3y\;\left( 1 \right)\end{array}\)

Xét hàm số \(y = f\left( t \right) = {2^t} + t;\). \(y’ = f’\left( t \right) = {2^t}.\ln 2 + 1 > 0,\;\forall t\).

Suy ra hàm số \(y = f\left( t \right)\)đồng biến trên \(\mathbb{R}\)

Phương trình \(\left( 1 \right)\) tương đương: \(f\left( {{{\log }_2}\left( {x + 1} \right)} \right) = f\left( {3y} \right) \Leftrightarrow {\log _2}\left( {x + 1} \right) = 3y \Leftrightarrow x = {8^y} – 1\)

Mà \(0 \le x \le 2022 \Leftrightarrow 0 \le {8^y} – 1 \le 2022 \Leftrightarrow 0 \le y \le {\log _8}2023\)

\(y \in \mathbb{Z} \Rightarrow y \in \left\{ {0;1;2;3} \right\}\). Mỗi giá trị của \(y\) cho một giá trị của \(x\), \(\left( {x = {8^y} – 1} \right)\).

Vậy có 4 cặp \(\left( {x;y} \right)\)nguyên thỏa mãn yêu cầu đề bài.

===========
Đây là các câu ÔN THI TN THPT MÔN TOÁN 2023 – CHUYÊN ĐỀ Trắc nghiệm Phương trình và bất phương trình Logarit.

Bài liên quan:

  1. Cho hàm số $f(x)$ có đồ thị hàm số $f^{\prime}(x)$ như hình vẽ dưới đây. Có bao nhiêu số nguyên $m>-10$ để hàm số $y=f(x+m)$ nghịch biến trên $(0 ; 2)$ ?
  2. Biết đồ thị hàm số $y=\frac{1}{4} x^{4}-(3 m+1) x^{2}+2(m+1)$ có ba điểm cực trị $A, B, C$ sao cho $\triangle A B C$ nhận gốc tọa độ $O$ làm trọng tâm. Mệnh đề nào dưới đây đúng?
  3. Cho hàm số $y=\frac{1}{3} m x^{3}-(m-1) x^{2}+3(m-2) x+2023$ với $m$ là tham số. Tìm m để hàm số có 2 cực trị
  4. Số nghiệm thực của phương trình \({2^{2x + 1}}\left( {1 – {2^{3{x^2}}}} \right) = {3^{4x + 2}}\left( {{3^{6{x^2}}} – 1} \right)\).

  5. Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:

  6. Tập nghiệm của phương trình \({\log _2}\frac{{6x – 3}}{{24{x^2}}} = 8{x^2} – 2x + 1\) là

  7. Có bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y – 1} \right) = 2 – {\log _2}{x^x}\)

  8. . Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và

    \(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\).

  9. Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

  10. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

  11. Có bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} – 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} – 1} \right)\)?

  12. Gọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { – \infty ;\frac{{ – 16}}{{27}}} \right)\) sao cho phương trình

    \({4.4^{{x^2} + 2x}} + \left( {12m – 12} \right){6^{{x^2} + 2x}} – \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng

  13. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

  14. Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)?

  15. Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.