• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

Đăng ngày: 11/06/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

adsense
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

A. 2.

B. 3.

C. 1.

D. 0.

Lời giải:

\(\begin{array}{l}{6^x} + 2mx = m{2^x} + 2x{.3^x} \Leftrightarrow {2^x}{.3^x} – 2x{.3^x} = m{.2^x} – 2xm \Leftrightarrow {3^x}\left( {{2^x} – 2x} \right) – m\left( {{2^x} – 2x} \right) = 0\\ \Leftrightarrow \left( {{3^x} – m} \right)\left( {{2^x} – 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{2^x} – 2x = 0\\{3^x} = m\left( 2 \right)\end{array} \right.\end{array}\).

Xét hàm số \(g\left( x \right) = {2^x} – 2x\) có \(g’\left( x \right) = {2^x}\ln 2 – 2 \Rightarrow g”\left( x \right) = {2^x}{\left( {\ln 2} \right)^2} > 0,\forall x \in \mathbb{R}.\)

adsense

Do đó phương trình \(g’\left( x \right) = 0 \Leftrightarrow {2^x} = \frac{2}{{\ln 2}} \Leftrightarrow x = {\log _2}\left( {\frac{2}{{\ln 2}}} \right) \approx 1,53\). Gọi nghiệm đó là \({x_0}.\)

Hàm số \(g\left( x \right)\) có bảng biến thiên sau

Có bao nhiêu giá trị nguyên của tham số (m in left[ {0;30} right]) để phương trình ({6^x} + 2mx = m{2^x} + 2x{.3^x}) có đúng 3 nghiệm nguyên dương.</p> 1

Do \(g\left( {{x_0}} \right) < 0\) do đó \(g\left( x \right) = 0\) có hai nghiệm. Mà \(g\left( 1 \right) = g\left( 2 \right) = 0\) nên \(x = 1,x = 2\) là hai nghiệm của phương trình \({2^x} – 2x = 0.\)

Để phương trình \(\left( 1 \right)\) có ba nghiệm nguyên dương thì phương trình \(\left( 2 \right)\) có một nghiệm nguyên dương khác \(1,2\).

Với \(x = 3 \Rightarrow m = 27\)

Với \(x = 4 \Rightarrow m = 81\).

Vậy có một giá trị nguyên của \(m \in \left[ {0;30} \right]\) thoả mãn điều kiện bài toán.

=========== Đây là các câu ÔN THI TN THPT MÔN TOÁN 2023 – CHUYÊN ĐỀ Trắc nghiệm Phương trình và bất phương trình Logarit.

Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Bài liên quan:

  1. Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là

  2. Tập nghiệm của phương trình \({\log _2}\frac{{6x – 3}}{{24{x^2}}} = 8{x^2} – 2x + 1\) là

  3. Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là

  4. Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

  5. . Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là

  6. Có bao nhiêu số nguyên dương \(x,x \le 2023\) sao cho tồn tại số nguyên \(y\)thỏa mãn \(x\left( {{2^y} + y – 1} \right) = 2 – {\log _2}{x^x}\)

  7. : Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).

  8. . Có bao nhiêu cặp số nguyên \((x;y)\) thoả mãn điều kiện đề bài \(0 \le x \le 2023\) và

    \(3.({9^y} + 2y) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\).

  9. Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là

  10. Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

  11. Số nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) – {\log _2}4x = – 2\) là:

  12. Có bao nhiêu số nguyên dương \(m < 2023\)sao cho tồn tại số nguyên \(x\)thỏa mãn \({2^m}\left( {{2^{x + 3}} – 1} \right) + {m^2} = m\left( {{2^m} + {2^{x + 3}} – 1} \right)\)?

  13. Cho phương trình \({\log _2}\left( {{9^x} + {{15.3}^x} – 15} \right) + {\log _2}\frac{1}{{{{\left( {{{4.3}^x} – 3} \right)}^2}}} = 0\). Số nghiệm của phương trình là:

  14. Gọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { – \infty ;\frac{{ – 16}}{{27}}} \right)\) sao cho phương trình

    \({4.4^{{x^2} + 2x}} + \left( {12m – 12} \right){6^{{x^2} + 2x}} – \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng

  15. Có bao nhiêu giá trị nguyên của tham số thực \(m\) để phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} – {\log _{\frac{1}{5}}}x + 1 – 3m = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right)\).

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.