Chuyên đề Cực trị Toạ độ OXYZ - FILE WORD - tự luận ========== booktoan.com chia sẻ đến các bạn Chuyên đề Cực trị Toạ độ OXYZ - FILE WORD năm 2022. Đề có đáp án chi tiết giúp các bạn đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong lần thi TN THPT NĂM 2022. NGUỒN: FB ============= File: Chuyên đề Cực trị Toạ độ OXYZ - FILE … [Đọc thêm...] vềChuyên đề Cực trị Toạ độ OXYZ – FILE WORD
Cuc tri Hinh hoc Oxyz
Một số bài toán cực trị trong hình học giải tích không gian
Một số bài toán cực trị trong hình học giải tích không gian 1 Chủ đề 1. Tìm điểm thỏa điều kiện cực trị 1 d Bài toán 1: Cho điểm A cố định và điểm M di động trên hình (H ) (đường thẳng, mặt phẳng). Tìm tọa độ M để độ dài AM nhỏ nhất. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 d Bài toán 2: Cho mặt phẳng (P) và hai điểm A, B phân biệt. Tìm điểm M ∈ (P) để MA … [Đọc thêm...] vềMột số bài toán cực trị trong hình học giải tích không gian
Cho hình chóp tứ giác đều \(S.ABCD\)có cạnh đáy bằng \(2\), đường cao\(SO = 2\). Gọi \(M,N\) lần lượt là hai điểm di động trên các cạnh của \(AB,AD\)sao cho hai mặt phẳng \(\left( {SCM} \right);\,\left( {SCN} \right)\) luôn vuông góc với nhau. Thể tích lớn nhất của hình chóp \(S.AMCN\)là
Câu hỏi:
Cho hình chóp tứ giác đều \(S.ABCD\)có cạnh đáy bằng \(2\), đường cao\(SO = 2\). Gọi \(M,N\) lần lượt là hai điểm di động trên các cạnh của \(AB,AD\)sao cho hai mặt phẳng \(\left( {SCM} \right);\,\left( {SCN} \right)\) luôn vuông góc với nhau. Thể tích lớn nhất của hình chóp \(S.AMCN\)là
A. \(4.\left( {8\sqrt 6 - 16} \right)\).
B. \(\frac{4}{3}\).
C. … [Đọc thêm...] về Cho hình chóp tứ giác đều \(S.ABCD\)có cạnh đáy bằng \(2\), đường cao\(SO = 2\). Gọi \(M,N\) lần lượt là hai điểm di động trên các cạnh của \(AB,AD\)sao cho hai mặt phẳng \(\left( {SCM} \right);\,\left( {SCN} \right)\) luôn vuông góc với nhau. Thể tích lớn nhất của hình chóp \(S.AMCN\)là
Trong không gian với hệ tọa độ \(Oxyz\), cho hình vuông \(ABCD\) trong đó \(A\left( {1;2;0} \right),B\left( {3;0;8} \right),\,\,C\left( { – 3; – 6;8} \right).\) Hai điểm \(M,{\rm{ }}N\) lần lượt nằm trên cạnh \(AB,{\rm{ }}BC\) thỏa mãn \(AM = BN = \frac{1}{3}BC\). Gọi \(I\left( {a;b;c} \right)\) là giao điểm của \(AN,{\rm{ }}DM\). Tính \(P = a + b + c\).
Câu hỏi:
Trong không gian với hệ tọa độ \(Oxyz\), cho hình vuông \(ABCD\) trong đó \(A\left( {1;2;0} \right),B\left( {3;0;8} \right),\,\,C\left( { - 3; - 6;8} \right).\) Hai điểm \(M,{\rm{ }}N\) lần lượt nằm trên cạnh \(AB,{\rm{ }}BC\) thỏa mãn \(AM = BN = \frac{1}{3}BC\). Gọi \(I\left( {a;b;c} \right)\) là giao điểm của \(AN,{\rm{ }}DM\). Tính \(P = a + b + c\).
A. … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho hình vuông \(ABCD\) trong đó \(A\left( {1;2;0} \right),B\left( {3;0;8} \right),\,\,C\left( { – 3; – 6;8} \right).\) Hai điểm \(M,{\rm{ }}N\) lần lượt nằm trên cạnh \(AB,{\rm{ }}BC\) thỏa mãn \(AM = BN = \frac{1}{3}BC\). Gọi \(I\left( {a;b;c} \right)\) là giao điểm của \(AN,{\rm{ }}DM\). Tính \(P = a + b + c\).
Câu 42: Trong không gian với hệ toạ độ \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;1; – 2} \right);{\rm{ }}B\left( {2;0; – 1} \right);{\rm{ }}C\left( { – 3;2;0} \right)\) và \(D\left( {m;0;3} \right)\). Tổng các giá trị của \(m\) để tứ diện \(ABCD\) có thể tích bằng \(5\) là
Câu hỏi:
Câu 42: Trong không gian với hệ toạ độ \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;1; - 2} \right);{\rm{ }}B\left( {2;0; - 1} \right);{\rm{ }}C\left( { - 3;2;0} \right)\) và \(D\left( {m;0;3} \right)\). Tổng các giá trị của \(m\) để tứ diện \(ABCD\) có thể tích bằng \(5\) là
A. \( - 20\).
B. \(6\).
C. \( - 6\). \(\)
D. \( - 20\).
Lời giải
Ta có … [Đọc thêm...] về Câu 42: Trong không gian với hệ toạ độ \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;1; – 2} \right);{\rm{ }}B\left( {2;0; – 1} \right);{\rm{ }}C\left( { – 3;2;0} \right)\) và \(D\left( {m;0;3} \right)\). Tổng các giá trị của \(m\) để tứ diện \(ABCD\) có thể tích bằng \(5\) là
Cho hình lăng trụ tam giác đều\(ABC.A’B’C’\) có cạnh đáy bằng \(1\), cạnh bên bằng \(3\). Gọi \(I\) là điểm trên cạnh \(BB’\) sao cho \(BI = \frac{1}{3}BB’\), điểm \(M\)di động trên cạnh AA’. Biết diện tích của tam giác \(MIC’\) nhỏ nhất khi tỷ số \(\frac{{AM}}{{AA’}} = \frac{a}{b}\,\left( {a \in \mathbb{N};b \in \mathbb{N}*,\,\left( {a,b} \right) = 1} \right)\). \(P = a + b\)là
Câu hỏi:
Cho hình lăng trụ tam giác đều\(ABC.A'B'C'\) có cạnh đáy bằng \(1\), cạnh bên bằng \(3\). Gọi \(I\) là điểm trên cạnh \(BB'\) sao cho \(BI = \frac{1}{3}BB'\), điểm \(M\)di động trên cạnh AA'. Biết diện tích của tam giác \(MIC'\) nhỏ nhất khi tỷ số \(\frac{{AM}}{{AA'}} = \frac{a}{b}\,\left( {a \in \mathbb{N};b \in \mathbb{N}*,\,\left( {a,b} \right) = 1} \right)\). … [Đọc thêm...] về Cho hình lăng trụ tam giác đều\(ABC.A’B’C’\) có cạnh đáy bằng \(1\), cạnh bên bằng \(3\). Gọi \(I\) là điểm trên cạnh \(BB’\) sao cho \(BI = \frac{1}{3}BB’\), điểm \(M\)di động trên cạnh AA’. Biết diện tích của tam giác \(MIC’\) nhỏ nhất khi tỷ số \(\frac{{AM}}{{AA’}} = \frac{a}{b}\,\left( {a \in \mathbb{N};b \in \mathbb{N}*,\,\left( {a,b} \right) = 1} \right)\). \(P = a + b\)là
Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\). Đường thẳng đi qua \(A\), cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là
Câu hỏi: Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\). Đường thẳng đi qua \(A\), cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là A. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 3 - t\\z = - 1 + t\end{array} \right.\). B. \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + t\\z = … [Đọc thêm...] vềTrong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\). Đường thẳng đi qua \(A\), cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là
Trong không gian \(Oxyz\)cho mặt cầu \((S):{(x – 2)^2} + {(y – 3)^2} + {(z + 1)^2} = 1\). Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\).
Câu hỏi: Trong không gian \(Oxyz\)cho mặt cầu \((S):{(x - 2)^2} + {(y - 3)^2} + {(z + 1)^2} = 1\). Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\). A. \(1\). B. \(4\). C. \(2\). D. … [Đọc thêm...] vềTrong không gian \(Oxyz\)cho mặt cầu \((S):{(x – 2)^2} + {(y – 3)^2} + {(z + 1)^2} = 1\). Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\).
Trong không gian , cho hai điểm \(A\left( {3; – 2;2} \right)\), \(B\left( { – 2;2;0} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z – 3 = 0\). Xét các điểm \(M\), \(N\) di động trên \(\left( P \right)\) sao cho \(MN = 1\). Giá trị nhỏ nhất của \(2M{A^2} + 3N{B^2}\) bằng
Câu hỏi: Trong không gian , cho hai điểm \(A\left( {3; - 2;2} \right)\), \(B\left( { - 2;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - y + 2z - 3 = 0\). Xét các điểm \(M\), \(N\) di động trên \(\left( P \right)\) sao cho \(MN = 1\). Giá trị nhỏ nhất của \(2M{A^2} + 3N{B^2}\) bằng A. \(49,8\). B. \(45\). C. \(53\). D. \(55,8\). LỜI GIẢI CHI TIẾT Gọi … [Đọc thêm...] vềTrong không gian , cho hai điểm \(A\left( {3; – 2;2} \right)\), \(B\left( { – 2;2;0} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z – 3 = 0\). Xét các điểm \(M\), \(N\) di động trên \(\left( P \right)\) sao cho \(MN = 1\). Giá trị nhỏ nhất của \(2M{A^2} + 3N{B^2}\) bằng
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 2}}{{ – 1}} = \frac{{z – 3}}{4}\) và mặt phẳng \(\left( P \right):3x – 2y – 2z – 10 = 0\). Biết đường thẳng \(\Delta \) là hình chiếu vuông góc của \(d\) trên \(\left( P \right)\), đường thẳng \(\Delta \) đi qua điểm nào sau đây?
Câu hỏi: Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{4}\) và mặt phẳng \(\left( P \right):3x - 2y - 2z - 10 = 0\). Biết đường thẳng \(\Delta \) là hình chiếu vuông góc của \(d\) trên \(\left( P \right)\), đường thẳng \(\Delta \) đi qua điểm nào sau đây? A. \(A\left( {1\;;\; - 2\;;\;3} \right)\). B. \(B\left( … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 2}}{{ – 1}} = \frac{{z – 3}}{4}\) và mặt phẳng \(\left( P \right):3x – 2y – 2z – 10 = 0\). Biết đường thẳng \(\Delta \) là hình chiếu vuông góc của \(d\) trên \(\left( P \right)\), đường thẳng \(\Delta \) đi qua điểm nào sau đây?