• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / _Trắc nghiệm Hình học OXYZ / [4] Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( {0;1;2} \right)\), mặt phẳng \(\left( \alpha \right)\): \(x + y – z + 4 = 0\) và mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 2} \right)^2} = 25\). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(A,\) vuông góc với \(\left( \alpha \right)\) và đồng thời \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Diện tích của hình tròn giao tuyến khi đó là

[4] Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( {0;1;2} \right)\), mặt phẳng \(\left( \alpha \right)\): \(x + y – z + 4 = 0\) và mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 2} \right)^2} = 25\). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(A,\) vuông góc với \(\left( \alpha \right)\) và đồng thời \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Diện tích của hình tròn giao tuyến khi đó là

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( {0;1;2} \right)\), mặt phẳng \(\left( \alpha \right)\): \(x + y – z + 4 = 0\) và mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 2} \right)^2} = 25\). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(A,\) vuông góc với \(\left( \alpha \right)\) và đồng thời \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Diện tích của hình tròn giao tuyến khi đó là

A. \(S = 6\pi \).

B. \(S = 19\pi \).

C. \(S = \frac{9}{2}\pi \).

D. \(S = 25\pi \).

Lời giải:

Phương trình đường thẳng \(d\) đi qua \(A\) và vuông góc với \(\left( \alpha \right)\) là: \(\left\{ \begin{array}{l}x = t\\y = 1 + t\\z = 2 – t\end{array} \right.\).

Gọi \(d \cap \left( \alpha \right) = M\left( {t;\,1 + t;\,2 – t} \right)\)

\(M \in \left( \alpha \right) \Rightarrow t + 1 + t – \left( {2 – t} \right) + 4 = 0 \Leftrightarrow t = – 1 \Rightarrow M\left( { – 1;\,0;\,3} \right)\).

Gọi phương trình mặt phẳng \(\left( P \right)\) có dạng \(ax + by + cz + d = 0\,\,\left( {{a^2} + {b^2} + {c^2} \ne 0} \right)\).

Do \(A,\,M \in \,\left( P \right)\) \( \Rightarrow \left\{ \begin{array}{l}b + 2c + d = 0\\ – a + 3c + d = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = a – 3c\\b = – a + c\end{array} \right.\)

\( \Rightarrow \left( P \right):\,ax + \left( { – a + c} \right)y + cz + a – 3c = 0\).

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3;\,1;\,2} \right),\,\,R = 5\), khi đó

\(d\left( {I;\,\left( P \right)} \right) = \frac{{\left| {3a – a + c + 2c + a – 3c} \right|}}{{\sqrt {{a^2} + {{\left( { – a + c} \right)}^2} + {c^2}} }} = \frac{{3\left| a \right|}}{{\sqrt {2{a^2} + 2{c^2} – 2ac} }} = k\,\,\left( {0 \le k < 5} \right)\).

Theo bài, \(\left( P \right)\) cắt \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất \( \Rightarrow k\) lớn nhất.

TH1: \(c = 0 \Rightarrow a \ne 0\)\( \Rightarrow k = \frac{{3\sqrt 2 }}{2} < 5\).

TH2: \(c \ne 0 \Rightarrow 3\left| a \right| = k\sqrt {2{a^2} + 2{c^2} – 2ac} \Leftrightarrow \left( {2{k^2} – 9} \right){a^2} – 2{k^2}ac + 2{k^2}{c^2} = 0\)

Ta có \(\Delta ‘ = – 3{k^4}{c^2} + 18{k^2}{c^2} \ge 0 \Rightarrow 3{k^2}{c^2}\left( {6 – {k^2}} \right) \ge 0 \Rightarrow {k^2} \le 6 \Rightarrow k \le \sqrt 6 < 5\).

Do đó \({k_{\max }} = \sqrt 6 \), khi đó bán kính đường tròn giao tuyến \(r = \sqrt {{5^2} – {{\left( {\sqrt 6 } \right)}^2}} = \sqrt {19} \Rightarrow S = 19\pi \).

===========

Tương tự Câu 50 CỰC TRỊ HÌNH HỌC OXYZ – VẬN DỤNG CAO – PHÁT TRIỂN Toán TK 2024

Bài liên quan:

  1. [4] Trong không gian với hệ trục tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):2x – y – 2z – 2 = 0\) và mặt phẳng \(\left( Q \right):2x – y – 2z + 10 = 0\) song song với nhau. Biết \(A\;(1\,;\,2\,;\,1)\) là điểm nằm giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Gọi \(\left( S \right)\) là mặt cầu qua \(A\) và tiếp xúc với cả hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Biết rằng khi \(\left( S \right)\) thay đổi thì tâm của nó luôn nằm trên một đường tròn. Tính bán kính \(r\) của đường tròn đó

  2. [4] Trong không gian \(Oxyz,\) cho điểm \(A\left( {2\,; – \,1\,; – 3} \right)\)và mặt cầu \(\left( S \right)\) có phương trình: \(\,{\left( {x – 4} \right)^2} + {\left( {y – 3} \right)^2} + {\left( {z – 4} \right)^2} = 25.\) Gọi \(\left( C \right)\) là giao tuyến của \(\left( S \right)\)với mặt phẳng \(\left( {Oyz} \right).\) Lấy hai điểm \(M,\,N\)trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 .\) Khi tứ diện \(OAMN\)có thể tích lớn nhất thì đường thẳng \(MN\)đi qua điểm nào trong số các điểm dưới đây?

  3. [4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(I\left( {2;1;1} \right)\) có bán kính bằng 4 và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(J\left( {2;1;5} \right)\) có bán kính \(2\). \(\left( P \right)\) là mặt phẳng thay đổi tiếp xúc với hai mặt cầu \(\left( {{S_1}} \right),\left( {{S_2}} \right)\). Đặt \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của khoảng cách từ điểm \(O\) đến \(\left( P \right)\). Giá trị \(M + m\) bằng

  4. [4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {(z – 3)^2} = 8\) và hai điểm \(A\left( {4;4;3} \right)\), \(B\left( {1;1;1} \right)\). Tập hợp tất cả các điểm \(M\) thuộc \(\left( S \right)\) sao cho \(MA = 2MB\) là một đường tròn \(\left( C \right)\). Bán kính của \(\left( C \right)\) bằng

  5. [4] Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;\,3;\, – 5} \right)\), \(B\left( {1;\,1;\, – 5} \right)\), \(C\left( {4;\,3;\, – 1} \right)\) và mặt cầu\(\left( {{S_m}} \right):\) \({x^2} + {y^2} + {z^2} + \left( {m – 2} \right)x + 4y + \left( {m – 2} \right)z – 3 = 0\) (\(m\) là tham số thực). Gọi \(\left( T \right)\) là tập hợp các điểm cố định mà mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua với mọi số thực \(m\) và \(M\) là một điểm di động trên \(\left( T \right)\) sao cho thể tích tứ diện \(MABC\) đạt giá trị lớn nhất \({V_{\max }}\). Giá trị \({V_{\max }}\) bằng

  6. [4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; – 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường thẳng \(\Delta \). Một khối nón \(\left( N \right)\) có đỉnh \(I\) và đường tròn đáy của khối nón nằm trên mặt cầu \(\left( S \right)\). Thể tích lớn nhất của khối nón \(\left( N \right)\) là \(\max {V_{\left( N \right)}} = \frac{{q\pi }}{3}\). Khi đó tổng \(m + n + p + q\) bằng

  7. [4] Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x – 3} \right)^2} + {\left( {y – 4} \right)^2} + {\left( {z – 4} \right)^2} = 25\) và điểm \(A\left( {0\,;\,1\,;\,9} \right)\). Gọi đường tròn \(\left( C \right)\) là giao tuyến của mặt cầu \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right).\) Lấy hai điểm \(M,\,N\) trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 \). Khi tứ diện \(OAMN\) có thể tích lớn nhất thì đường thẳng \(MN\) đi qua điểm nào trong các điểm sau?

  8. [4] Trong không gian tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {\left( {y – 1} \right)^2} + {\left( {z – 2} \right)^2} = 16\),\(\left( {{S_2}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1\) và điểm \(A\left( {\frac{4}{3};\frac{7}{3}; – \frac{{14}}{3}} \right)\). Gọi \(I\) là tâm của mặt cầu \(\left( {{S_1}} \right)\) và \(\left( P \right)\) là mặt phẳng tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\) và \(\left( {{S_2}} \right)\). Xét các điểm \(M\) thay đổi và thuộc mặt phẳng \(\left( P \right)\) sao cho đường thẳng \(IM\) tiếp xúc với mặt cầu \(\left( {{S_2}} \right)\). Khi đoạn thẳng \(AM\) ngắn nhất thì \(M\left( {a;b;c} \right)\). Tính giá trị của \(T = a + b + c\).

  9. [4] Trong không gian \(Oxyz\), cho hình nón \(\left( \mathcal{N} \right)\) có đỉnh \(O\left( {0;0;0} \right)\), độ dài đường sinh bằng \(\sqrt 5 \) và đường tròn đáy nằm trên mặt phẳng \(\left( P \right):z + 2 = 0\). Mặt phẳng \(\left( Q \right):x – 3y = 0\) cắt đường tròn đáy tại hai điểm \(A,B\). Mặt phẳng \(\left( R \right):3z + 2 = 0\) cắt đường sinh \(OB\) tại điểm \(K\). Hỏi độ dài đường ngắn nhất chạy trên bề mặt của hình nón \(\left( \mathcal{N} \right)\) nối từ \(A\) đến \(K\) nằm trong khoảng nào?

  10. [4] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 4 = 0\) và hai điểm \(A\left( {4;2;4} \right),\,\,B\left( {1;4;2} \right)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = \left( {0;1;1} \right)\) và \(MN = 4\sqrt 2 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

  11. 4] Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2\,;\,0\,;\,3} \right),\,I\left( {1\,;\,2\,;\, – 4} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z – 10 = 0\). Điểm \(M\) di động sao cho độ dài \(MI = 5\) và \(N\) thuộc mặt phẳng \(\left( P \right)\) sao cho diện tích tam giác \(AIN\) bằng \(18\sqrt 2 \). Giá trị lớn nhất của độ dài đoạn thẳng \(MN\) nằm trong khoảng nào?

  12. [4] Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( { – 1;0;0} \right)\) và \(B\left( {1;1;3} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 6z + 7 = 0\) và \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 2y – 6z + 7 = 0\). Xét hai điểm \(M\), \(N\) là hai điểm bất kì thuộc \(\left( P \right)\) sao cho \(MN = 2\). Giá trị nhỏ nhất của \(AM + BN\) bằng

  13. [4] Trong không gian với hệ tọa độ \({\rm{O}}xyz\), cho hai mặt phẳng song song \(\left( P \right):\,2x – y + 2z – 3 = 0,\)\(\left( Q \right):\,2x – y + 2z + 7 = 0\) và điểm \(A\left( { – 1;\,1;\,1} \right)\) nằm trong khoảng giữa hai mặt phẳng này. Gọi \(\left( S \right)\) là mặt cầu đi qua \(A\) và tiếp xúc với cả \(\left( P \right)\) và \(\left( Q \right).\) Biết khi \(\left( S \right)\) thay đổi thì tâm \(I\) của nó luôn thuộc đường tròn \(\left( C \right)\) cố định. Bán kính hình tròn giới hạn bởi \(\left( C \right)\) là\(\)

  14. [4] Trong không gian \(Oxyz\), cho hai điểm \(A\left( {4; – 2;4} \right),B\left( { – 2;6;4} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 5\\y = – 1\\z = t\end{array} \right..\) Gọi \(M\) là điểm di động thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\widehat {AMB} = 90^\circ \) và \(N\) là điểm di động luôn cách \(d\) một khoảng là 1 đơn vị và cách mặt phẳng \(\left( {Oxy} \right)\) một khoảng không quá 3 đơn vị. Tổng giá trị nhỏ nhất và giá trị lớn nhất của \(MN\) bằng

  15. [4] Trong mặt phẳng toạ độ \(Oxyz\) cho mặt cầu \(\left( S \right)\) có phương trình \(\,{\left( {x – 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 3} \right)^2} = 3\). Xét khối trụ \(\left( T \right)\) có trục song song với trục \(Ox\) và có hai đường tròn đáy nằm trên mặt cầu \(\left( S \right)\). Khi \(\left( T \right)\) có thể tích lớn nhất, giả sử phương trình các mặt phẳng chứa hai đường tròn đáy của \(\left( T \right)\) là \(x + by + cz + d = 0\) và \(x + by + cz + d’ = 0\) \(\left( {d > d’} \right)\). Giá trị của \(2d – d’\) bằng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.