Câu hỏi: 493. Trong không gian \(Oxyz\), cho điểm \(A\left( {0\,;\,1\,;\,9} \right)\) và mặt cầu \(\left( S \right)\) có phương trình: \({\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 4} \right)^2} = 25\). Gọi \(\left( C \right)\) là giao tuyến của \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right)\). Lấy hai điểm \(M\); \(N\) trên \(\left( C … [Đọc thêm...] về493. Trong không gian \(Oxyz\), cho điểm \(A\left( {0\,;\,1\,;\,9} \right)\) và mặt cầu \(\left( S \right)\) có phương trình: \({\left( {x – 3} \right)^2} + {\left( {y – 4} \right)^2} + {\left( {z – 4} \right)^2} = 25\). Gọi \(\left( C \right)\) là giao tuyến của \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right)\). Lấy hai điểm \(M\); \(N\) trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 \). Khi tứ diện \(OAMN\) có thể tích lớn nhất thì đường thẳng \(MN\) đi qua điểm nào trong số các điểm dưới đây?
Cuc tri Hinh hoc Oxyz
494. Trong hệ trục\(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 49\) và\(\left( {{S_2}} \right):{\left( {x – 10} \right)^2} + {\left( {y – 9} \right)^2} + {\left( {z – 2} \right)^2} = 400\) và mặt phẳng \(\left( P \right):4x – 3y + mz + 22 = 0\). Có bao nhiêu số nguyên m để mp (P) cắt hai mặt cầu \(\left( {{S_1}} \right),\;\left( {{S_2}} \right)\) theo giao tuyến là hai đường tròn không có tiếp tuyến chung?
Câu hỏi: 494. Trong hệ trục\(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 2} \right)^2} = 49\) và\(\left( {{S_2}} \right):{\left( {x - 10} \right)^2} + {\left( {y - 9} \right)^2} + {\left( {z - 2} \right)^2} = 400\) và mặt phẳng \(\left( P \right):4x - 3y + mz + 22 = 0\). Có bao nhiêu số nguyên m để mp … [Đọc thêm...] về494. Trong hệ trục\(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 49\) và\(\left( {{S_2}} \right):{\left( {x – 10} \right)^2} + {\left( {y – 9} \right)^2} + {\left( {z – 2} \right)^2} = 400\) và mặt phẳng \(\left( P \right):4x – 3y + mz + 22 = 0\). Có bao nhiêu số nguyên m để mp (P) cắt hai mặt cầu \(\left( {{S_1}} \right),\;\left( {{S_2}} \right)\) theo giao tuyến là hai đường tròn không có tiếp tuyến chung?