Chuyên đề Cực trị Toạ độ OXYZ - FILE WORD - tự luận ========== booktoan.com chia sẻ đến các bạn Chuyên đề Cực trị Toạ độ OXYZ - FILE WORD năm 2022. Đề có đáp án chi tiết giúp các bạn đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong lần thi TN THPT NĂM 2022. NGUỒN: FB ============= File: Chuyên đề Cực trị Toạ độ OXYZ - FILE … [Đọc thêm...] vềChuyên đề Cực trị Toạ độ OXYZ – FILE WORD
Trắc nghiệm Hình học OXYZ van dung cao
494. Trong hệ trục\(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 49\) và\(\left( {{S_2}} \right):{\left( {x – 10} \right)^2} + {\left( {y – 9} \right)^2} + {\left( {z – 2} \right)^2} = 400\) và mặt phẳng \(\left( P \right):4x – 3y + mz + 22 = 0\). Có bao nhiêu số nguyên m để mp (P) cắt hai mặt cầu \(\left( {{S_1}} \right),\;\left( {{S_2}} \right)\) theo giao tuyến là hai đường tròn không có tiếp tuyến chung?
Câu hỏi: 494. Trong hệ trục\(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 2} \right)^2} = 49\) và\(\left( {{S_2}} \right):{\left( {x - 10} \right)^2} + {\left( {y - 9} \right)^2} + {\left( {z - 2} \right)^2} = 400\) và mặt phẳng \(\left( P \right):4x - 3y + mz + 22 = 0\). Có bao nhiêu số nguyên m để mp … [Đọc thêm...] về494. Trong hệ trục\(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 49\) và\(\left( {{S_2}} \right):{\left( {x – 10} \right)^2} + {\left( {y – 9} \right)^2} + {\left( {z – 2} \right)^2} = 400\) và mặt phẳng \(\left( P \right):4x – 3y + mz + 22 = 0\). Có bao nhiêu số nguyên m để mp (P) cắt hai mặt cầu \(\left( {{S_1}} \right),\;\left( {{S_2}} \right)\) theo giao tuyến là hai đường tròn không có tiếp tuyến chung?
493. Trong không gian \(Oxyz\), cho điểm \(A\left( {0\,;\,1\,;\,9} \right)\) và mặt cầu \(\left( S \right)\) có phương trình: \({\left( {x – 3} \right)^2} + {\left( {y – 4} \right)^2} + {\left( {z – 4} \right)^2} = 25\). Gọi \(\left( C \right)\) là giao tuyến của \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right)\). Lấy hai điểm \(M\); \(N\) trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 \). Khi tứ diện \(OAMN\) có thể tích lớn nhất thì đường thẳng \(MN\) đi qua điểm nào trong số các điểm dưới đây?
Câu hỏi: 493. Trong không gian \(Oxyz\), cho điểm \(A\left( {0\,;\,1\,;\,9} \right)\) và mặt cầu \(\left( S \right)\) có phương trình: \({\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 4} \right)^2} = 25\). Gọi \(\left( C \right)\) là giao tuyến của \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right)\). Lấy hai điểm \(M\); \(N\) trên \(\left( C … [Đọc thêm...] về493. Trong không gian \(Oxyz\), cho điểm \(A\left( {0\,;\,1\,;\,9} \right)\) và mặt cầu \(\left( S \right)\) có phương trình: \({\left( {x – 3} \right)^2} + {\left( {y – 4} \right)^2} + {\left( {z – 4} \right)^2} = 25\). Gọi \(\left( C \right)\) là giao tuyến của \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right)\). Lấy hai điểm \(M\); \(N\) trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 \). Khi tứ diện \(OAMN\) có thể tích lớn nhất thì đường thẳng \(MN\) đi qua điểm nào trong số các điểm dưới đây?
495. Trong không gian hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\)với\(a \ge 4,b \ge 5,c \ge 6\) và mặt cầu \(\left( S \right)\) có bán kính bằng \(\frac{{3\sqrt {10} }}{2}\) ngoại tiếp tứ diện \(O.ABC\). Khi tổng \(OA + OB + OC\) đạt giá trị nhỏ nhất thì mặt phẳng\(\left( \alpha \right)\)đi qua tâm \(I\) của mặt cầu \(\left( S \right)\)và song song với mặt phẳng \(\left( {OAB} \right)\)có dạng \({\rm{mx}} + ny + pz + q = 0\) ( với \({\rm{m}}{\rm{,n}}{\rm{,p}}{\rm{,q}} \in \mathbb{Z}{\rm{;}}\frac{q}{p}\) là phân số tối giản). Giá trị \({\rm{T = m + n + p + q}}\) bằng
Câu hỏi: 495. Trong không gian hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\)với\(a \ge 4,b \ge 5,c \ge 6\) và mặt cầu \(\left( S \right)\) có bán kính bằng \(\frac{{3\sqrt {10} }}{2}\) ngoại tiếp tứ diện \(O.ABC\). Khi tổng \(OA + OB + OC\) đạt giá trị nhỏ nhất thì mặt phẳng\(\left( \alpha \right)\)đi qua tâm … [Đọc thêm...] về495. Trong không gian hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\)với\(a \ge 4,b \ge 5,c \ge 6\) và mặt cầu \(\left( S \right)\) có bán kính bằng \(\frac{{3\sqrt {10} }}{2}\) ngoại tiếp tứ diện \(O.ABC\). Khi tổng \(OA + OB + OC\) đạt giá trị nhỏ nhất thì mặt phẳng\(\left( \alpha \right)\)đi qua tâm \(I\) của mặt cầu \(\left( S \right)\)và song song với mặt phẳng \(\left( {OAB} \right)\)có dạng \({\rm{mx}} + ny + pz + q = 0\) ( với \({\rm{m}}{\rm{,n}}{\rm{,p}}{\rm{,q}} \in \mathbb{Z}{\rm{;}}\frac{q}{p}\) là phân số tối giản). Giá trị \({\rm{T = m + n + p + q}}\) bằng
49. Trong không gian Oxyz, cho hai điểm \(A\left( {1; – 3; – 4} \right)\) và điểm \(B\left( { – 2;1;2} \right)\). Xét hai điểm \(M\) và \(N\) thay đổi thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(MN = 2\). Giá trị lớn nhất của \(\left| {AM – BN} \right|\) bằng
Câu hỏi: 49. Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 3; - 4} \right)\) và điểm \(B\left( { - 2;1;2} \right)\). Xét hai điểm \(M\) và \(N\) thay đổi thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(MN = 2\). Giá trị lớn nhất của \(\left| {AM - BN} \right|\) bằng A. \(3\sqrt 5 \). B. \(\sqrt {61} \). C. \(\sqrt {13} \). D. \(\sqrt {53} \). Lời … [Đọc thêm...] về49. Trong không gian Oxyz, cho hai điểm \(A\left( {1; – 3; – 4} \right)\) và điểm \(B\left( { – 2;1;2} \right)\). Xét hai điểm \(M\) và \(N\) thay đổi thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(MN = 2\). Giá trị lớn nhất của \(\left| {AM – BN} \right|\) bằng
491. Trong không gian Oxyz, cho mặt cầu \((S):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 12\) và mặt phẳng \((P):2x + 2y – z – 1 = 0\). Mặt phẳng \((Q)\) song song với \((P)\) và cắt \((S)\) theo thiết diện là đường tròn \((C)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là hình tròn \((C)\) có thể tích lớn nhất. Mặt phẳng \((Q)\) có phương trình là
Câu hỏi: 491. Trong không gian Oxyz, cho mặt cầu \((S):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 12\) và mặt phẳng \((P):2x + 2y - z - 1 = 0\). Mặt phẳng \((Q)\) song song với \((P)\) và cắt \((S)\) theo thiết diện là đường tròn \((C)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là hình tròn \((C)\) có thể tích lớn nhất. Mặt … [Đọc thêm...] về491. Trong không gian Oxyz, cho mặt cầu \((S):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 12\) và mặt phẳng \((P):2x + 2y – z – 1 = 0\). Mặt phẳng \((Q)\) song song với \((P)\) và cắt \((S)\) theo thiết diện là đường tròn \((C)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là hình tròn \((C)\) có thể tích lớn nhất. Mặt phẳng \((Q)\) có phương trình là
492. Trong không gian \(Oxyz,\) mặt phẳng \(\left( P \right):5x + by + cz + d = 0\) đi qua hai điểm \(A\left( { – 1;5;7} \right)\), \(B\left( {4;2;3} \right)\) và cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) theo giao tuyến là đường tròn có chu vi nhỏ nhất. Tính giá trị biểu thức \(T = 3b – 2c\)
Câu hỏi: 492. Trong không gian \(Oxyz,\) mặt phẳng \(\left( P \right):5x + by + cz + d = 0\) đi qua hai điểm \(A\left( { - 1;5;7} \right)\), \(B\left( {4;2;3} \right)\) và cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\) theo giao tuyến là đường tròn có chu vi nhỏ nhất. Tính giá trị biểu thức \(T = 3b - … [Đọc thêm...] về492. Trong không gian \(Oxyz,\) mặt phẳng \(\left( P \right):5x + by + cz + d = 0\) đi qua hai điểm \(A\left( { – 1;5;7} \right)\), \(B\left( {4;2;3} \right)\) và cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) theo giao tuyến là đường tròn có chu vi nhỏ nhất. Tính giá trị biểu thức \(T = 3b – 2c\)
Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; - 1} \right)\). Khoảng cách từ C đến đường thẳng AB là: A. 3 B. \(2\sqrt 2 \) C. \(3\sqrt 2 \) D. \(\sqrt {13} \) Hãy chọn trả lời đúng trước khi xem đáp … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:
Đề: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là:
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là: A. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là:
Đề: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; – 2;1} \right)\)và \(\vec v=\left( { – 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu?
==== Câu hỏi: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; - 2;1} \right)\)và \(\vec v=\left( { - 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu? A. \(\frac{\pi }{3}\) B. \(\frac{{2\pi }}{3}\) C. \(\frac{\pi }{6}\) D. \(\frac{{5\pi }}{6}\) Hãy chọn trả … [Đọc thêm...] vềĐề: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; – 2;1} \right)\)và \(\vec v=\left( { – 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu?