• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Hình học OXYZ van dung cao

Đề: Cho mặt cầu (S): \({(x – 2)^2} + {(y + 1)^2} + {(z – 3)^2} = 9\). Điểm M (x; y; z) di động trên (S). Tìm giá trị nhỏ nhất của biểu thức \(P = \left| {2{\rm{x}} + 2y – z + 16} \right|.\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Cho mặt cầu (S): \({(x - 2)^2} + {(y + 1)^2} + {(z - 3)^2} = 9\). Điểm M (x; y; z) di động trên (S). Tìm giá trị nhỏ nhất của biểu thức \(P = \left| {2{\rm{x}} + 2y - z + 16} \right|.\) A. 6 B. 3 C. 24 D. 2 Hãy chọn trả lời đúng trước khi xem đáp án và lời giải … [Đọc thêm...] vềĐề: Cho mặt cầu (S): \({(x – 2)^2} + {(y + 1)^2} + {(z – 3)^2} = 9\). Điểm M (x; y; z) di động trên (S). Tìm giá trị nhỏ nhất của biểu thức \(P = \left| {2{\rm{x}} + 2y – z + 16} \right|.\)

Đề: Trong không gian toạ độ Oxyz, cho mặt phẳng \(\left( P \right):x + y + z – 4 = 0\)và hai điểm A(3;3;1), B(0;2;1). Tìm toạ độ điểm I thuộc đường thẳng AB (I khác B) sao cho khoảng cách từ I đến (P) bằng khoảng cách từ B đến (P).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian toạ độ Oxyz, cho mặt phẳng \(\left( P \right):x + y + z - 4 = 0\)và hai điểm A(3;3;1), B(0;2;1). Tìm toạ độ điểm I thuộc đường thẳng AB (I khác B) sao cho khoảng cách từ I đến (P) bằng khoảng cách từ B đến (P). A. \(I\left( { - 3;1;1} \right)\) B. \(I\left( {\frac{3}{2};\frac{5}{2};1} … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho mặt phẳng \(\left( P \right):x + y + z – 4 = 0\)và hai điểm A(3;3;1), B(0;2;1). Tìm toạ độ điểm I thuộc đường thẳng AB (I khác B) sao cho khoảng cách từ I đến (P) bằng khoảng cách từ B đến (P).

Đề: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là: A. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là:

Đề: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; – 2;1} \right)\)và \(\vec v=\left( { – 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; - 2;1} \right)\)và \(\vec v=\left( { - 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu? A. \(\frac{\pi }{3}\) B. \(\frac{{2\pi }}{3}\) C. \(\frac{\pi }{6}\) D. \(\frac{{5\pi }}{6}\) Hãy chọn trả … [Đọc thêm...] vềĐề: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; – 2;1} \right)\)và \(\vec v=\left( { – 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu?

Đề: Trong không gian với hệ tọa độ Oxyz, cho điểm \(I\left( {2; – 1; – 6} \right)\) và đường thẳng \(\Delta :\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{{ – 2}}.\) Gọi \(\left( P \right)\) là mặt phẳng thay đổi, luôn chứa đường thẳng \(\Delta ;\) \(\left( S \right)\) là mặt cầu tâm I và tiếp xúc mặt phẳng \(\left( P \right)\) sao cho mặt cầu \(\left( S \right)\) có bán kính lớn nhất. Tính bán kính R của mặt cầu \(\left( S \right).\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho điểm \(I\left( {2; - 1; - 6} \right)\) và đường thẳng \(\Delta :\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{{ - 2}}.\) Gọi \(\left( P \right)\) là mặt phẳng thay đổi, luôn chứa đường thẳng \(\Delta ;\) \(\left( S \right)\) là mặt cầu tâm I và tiếp xúc mặt phẳng \(\left( P \right)\) sao cho mặt cầu \(\left( S … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho điểm \(I\left( {2; – 1; – 6} \right)\) và đường thẳng \(\Delta :\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{{ – 2}}.\) Gọi \(\left( P \right)\) là mặt phẳng thay đổi, luôn chứa đường thẳng \(\Delta ;\) \(\left( S \right)\) là mặt cầu tâm I và tiếp xúc mặt phẳng \(\left( P \right)\) sao cho mặt cầu \(\left( S \right)\) có bán kính lớn nhất. Tính bán kính R của mặt cầu \(\left( S \right).\)

Đề: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z =  – 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z =  - 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’. A. 1 B. \(\sqrt 2 \) C. 2 D. \(\sqrt 3 … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z =  – 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’.

Đề: Trong không gian toạ độ Oxyz, cho mặt phẳng \((P): – 4x + 2y + 1 = 0\) và  điểm A(-1;0;1). Tính khoảng cách d từ A đến (P).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian toạ độ Oxyz, cho mặt phẳng \((P): - 4x + 2y + 1 = 0\) và  điểm A(-1;0;1). Tính khoảng cách d từ A đến (P). A. \(d = \frac{1}{5}.\) B. \(d = 1\) C. \(d = \frac{8}{5}\) D. \(d = \frac{8}{{25}}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho mặt phẳng \((P): – 4x + 2y + 1 = 0\) và  điểm A(-1;0;1). Tính khoảng cách d từ A đến (P).

Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; - 1} \right)\). Khoảng cách từ C đến đường thẳng AB là: A. 3 B. \(2\sqrt 2 \) C. \(3\sqrt 2 \) D. \(\sqrt {13} \) Hãy chọn trả lời đúng trước khi xem đáp … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 5
  • Trang 6
  • Trang 7

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.