• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Trắc nghiệm Khoảng cách và góc trong không gian / Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:

Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:

26/05/2019 by admin Để lại bình luận Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm Hình học OXYZ van dung cao

trac nghiem hinh hoc oxyz
====
Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:

  • A. 3
  • B. \(2\sqrt 2 \)
  • C. \(3\sqrt 2 \)
  • D. \(\sqrt {13} \)
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: D

Ta có \(\overrightarrow {AB}  = \left( {6; – 4;4} \right),\,\,\overrightarrow {AC}  = \left( {5; – 2; – 1} \right)\).

Khi đó: \(d\left( {C;AB} \right) = \frac{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|}} = \sqrt {13} .\)

=======|+|
Xem lại lý thuyết Phương pháp tọa độ trong không gian

Bài liên quan:

  • Đề: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z =  – 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’.
  • Đề: Trong không gian toạ độ Oxyz, cho mặt phẳng \((P): – 4x + 2y + 1 = 0\) và  điểm A(-1;0;1). Tính khoảng cách d từ A đến (P).
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { – 4;4;0} \right),B\left( {2;0;4} \right),C\left( {1;2; – 1} \right)\). Khoảng cách từ C đến đường thẳng AB là:
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right)\) và \(A'\left( {0;0;1} \right)\). Xét mặt phẳng (P) chứa CD’, gọi \(\alpha \) là góc giữa (P) và mặt phẳng \(\left( {BB'C'C} \right)\). Giá trị nhỏ nhất của \(\alpha \) là:
  • Đề: Trong không gian Oxyz, cho hai vectơ \(\vec u=\left( {1; – 2;1} \right)\)và \(\vec v=\left( { – 2;1;1} \right)\), góc giữa hai vecto đã cho bằng bao nhiêu?
  • Đề: Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;\,\,1;\,\,3} \right)\), \(B\left( { – 1;\,\,3;\,\,2} \right)\), \(C\left( { – 1;\,\,2;\,\,3} \right)\). Tính bán kính \(r\) của mặt cầu tâm \(O\) và tiếp xúc với mặt phẳng \(\left( {ABC} \right)\).
  • Đề: Góc giữa đường thẳng \(d:\left\{ \begin{array}{l}x = 2 – t\\y = 5\\z = 1 + t\end{array} \right.\) và mặt phẳng \(\left( P \right):y – z + 2 = 0\) là:
  • Đề: Cho mặt cầu (S): \({(x – 2)^2} + {(y + 1)^2} + {(z – 3)^2} = 9\). Điểm M (x; y; z) di động trên (S). Tìm giá trị nhỏ nhất của biểu thức \(P = \left| {2{\rm{x}} + 2y – z + 16} \right|.\)
  • Đề: Mỗi phút được 120 dao động \(T=\frac{60}{120}=0,5(s)\) Động năng bằng nửa cơ năng tại vị trí \(\pm \frac{A}{\sqrt{2}}\) Thời gian 2 lần liên tiếp đi qua các vị trí đó là \(\Delta t=\frac{T}{4}=0,125(s)\) Đáp án C
  • Đề: Trong không gian với hệ tọa độ Oxyz, hai mặt phẳng \(4x – 4y + 2z – 7 = 0\) và \(2x – 2y + z + 1 = 0\) chứa hai mặt của hình lập phương. Tính thể tích khối lập phương đó.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.