• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty so

Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\) Lời giải Đề bài: Chứng minh với mọi số nguyên dương n:a) … [Đọc thêm...] vềĐề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)

12. Cho hàm số \(y = f\left( x \right)\) liên tục trên các khoảng \(\left( { – \infty \,;\,2} \right)\) và \(\left( {2\,;\, + \infty } \right)\) và có đồ thị như hình vẽ.

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri ham tri tuyet doi, TN THPT 2021

DẠNG TOÁN CỰC TRỊ HÀM GIÁ TRỊ TUYỆT ĐỐI – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: 12. Cho hàm số \(y = f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty \,;\,2} \right)\) và \(\left( {2\,;\, + \infty } \right)\) và có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {\left| {2x - 1} \right| + 2} … [Đọc thêm...] về12. Cho hàm số \(y = f\left( x \right)\) liên tục trên các khoảng \(\left( { – \infty \,;\,2} \right)\) và \(\left( {2\,;\, + \infty } \right)\) và có đồ thị như hình vẽ.

Cho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m.\log 100x\) với \(m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm với mọi \(x\) thuộc \(\left[ {1; + \infty } \right)?\)

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m.\log 100x\) với \(m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm với mọi \(x\) thuộc \(\left[ {1; + \infty } \right)?\) A. \(1\).  B. … [Đọc thêm...] vềCho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m.\log 100x\) với \(m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm với mọi \(x\) thuộc \(\left[ {1; + \infty } \right)?\)

Cho hàm số \(y = a{x^5} + b{x^4} + c{x^3} + d{x^2} + ex + n\). Hàm số \(y = f’\left( x \right)\)có đồ thị như hình vẽ. Đặt \(M = \mathop {\max }\limits_{\left[ { – 5; + \infty } \right)} f\left( {\left| x \right|} \right),m = \mathop {\min }\limits_{\left[ { – 5; + \infty } \right)} f\left( {\left| x \right|} \right)\). Giá trị \(M + m\) bằng.

Ngày 27/06/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Max min ham hop, TN THPT 2021, Tuong tu cau 40 de toan minh hoa

DẠNG TOÁN 39 TÌM MIN MAX CỦA HÀM HỢP TRÊN ĐOẠN – phát triển theo đề tham khảo Toán 2021   Theo đề tham khảo Toán 2021 của Bộ GD&ĐT ĐỀ BÀI: Cho hàm số \(y = a{x^5} + b{x^4} + c{x^3} + d{x^2} + ex + n\). Hàm số \(y = f'\left( x \right)\)có đồ thị như hình vẽ. Đặt \(M = \mathop {\max }\limits_{\left[ { - 5; + \infty } \right)} f\left( {\left| x \right|} … [Đọc thêm...] vềCho hàm số \(y = a{x^5} + b{x^4} + c{x^3} + d{x^2} + ex + n\). Hàm số \(y = f’\left( x \right)\)có đồ thị như hình vẽ. Đặt \(M = \mathop {\max }\limits_{\left[ { – 5; + \infty } \right)} f\left( {\left| x \right|} \right),m = \mathop {\min }\limits_{\left[ { – 5; + \infty } \right)} f\left( {\left| x \right|} \right)\). Giá trị \(M + m\) bằng.

3: Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng

\(100\,{\rm{c}}{{\rm{m}}^3}\), bán kính đáy \(x\) cm, chiều cao \(h\) cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất. Khi đó,

kích thước của \(x\) và \(h\) gần bằng số nào nhất trong các số dưới đây để công ty X tiết kiệm được vật liệu nhất?

Ngày 14/06/2021 Thuộc chủ đề:Trắc nghiệm Khối tròn xoay Tag với:TN THPT 2021, TN tron xoay thuc te, Tuong tu cau 44 de toan minh hoa

DẠNG TOÁN 44 KHỐI TRÒN XOAY BÀI TOÁN THỰC TẾ – phát triển theo đề tham khảo Toán 2021   Theo đề tham khảo Toán 2021 của Bộ GD&ĐT ĐỀ BÀI: 3: Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng \(100\,{\rm{c}}{{\rm{m}}^3}\), bán kính đáy \(x\) cm, chiều cao \(h\) cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu … [Đọc thêm...] về3: Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng

\(100\,{\rm{c}}{{\rm{m}}^3}\), bán kính đáy \(x\) cm, chiều cao \(h\) cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất. Khi đó,

kích thước của \(x\) và \(h\) gần bằng số nào nhất trong các số dưới đây để công ty X tiết kiệm được vật liệu nhất?

Đồ thị hàm số\(y = {x^4} – 4{x^2}\)cắt đường thẳng \(d:y = m\) tại 4 điểm phân biệt và tạo ra các hình phắng có diện tích \({S_1},\)\({S_2},\)\({S_3}\) thỏa mãn\({S_1} + {S_2} = {S_3}\) (như hình vẽ). Giá trị \(m\) là số hữu tỷ tối giản có dạng \(m =  – \frac{a}{b}\) với\(a,\,b \in \mathbb{N}\). Giá trị cúa \(T = a – b\) bằng

Ngày 20/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Đồ thị hàm số\(y = {x^4} - 4{x^2}\)cắt đường thẳng \(d:y = m\) tại 4 điểm phân biệt và tạo ra các hình phắng có diện tích \({S_1},\)\({S_2},\)\({S_3}\) thỏa mãn\({S_1} + {S_2} = {S_3}\) (như hình vẽ). Giá trị \(m\) là số hữu tỷ tối giản có … [Đọc thêm...] vềĐồ thị hàm số\(y = {x^4} – 4{x^2}\)cắt đường thẳng \(d:y = m\) tại 4 điểm phân biệt và tạo ra các hình phắng có diện tích \({S_1},\)\({S_2},\)\({S_3}\) thỏa mãn\({S_1} + {S_2} = {S_3}\) (như hình vẽ). Giá trị \(m\) là số hữu tỷ tối giản có dạng \(m =  – \frac{a}{b}\) với\(a,\,b \in \mathbb{N}\). Giá trị cúa \(T = a – b\) bằng

Cho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m\log 100x\) với \(\,m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm thuộc \(\left[ {1; + \infty } \right)\). A. \(1\). B. \(3\). C. vô số\(\). D. \(2\)\(\).

Ngày 24/04/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Logarit nang cao, TN THPT 2021

Cho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m\log 100x\) với \(\,m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm thuộc \(\left[ {1; + \infty } \right)\). A. \(1\). B. \(3\). C. vô số\(\). D. \(2\)\(\). Lời giải chi tiết PHÁT TRIỂN TƯƠNG TỰ CÂU 47 ĐỀ TOÁN THAM KHẢO 2021 CỦA BỘ. BIÊN SOẠN TỪ STRONG TEAM TOÁN VDC - BIÊN TẬP … [Đọc thêm...] vềCho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m\log 100x\) với \(\,m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm thuộc \(\left[ {1; + \infty } \right)\). A. \(1\). B. \(3\). C. vô số\(\). D. \(2\)\(\).

Cho \(F\left( x \right)\)là nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2\sqrt {x\left( {x + 3} \right)} }}\)trên \(\left( {0; + \infty } \right)\)thỏa mãn \(F\left( 1 \right) = \ln 3\). Giá trị của \({e^{F\left( {2021} \right)}} – {e^{F\left( {2020} \right)}}\) thuộc khoảng nào?

Ngày 12/04/2021 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:On thi nguyen ham tich phan, TN THPT 2021

Cho \(F\left( x \right)\)là nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2\sqrt {x\left( {x + 3} \right)} }}\)trên \(\left( {0; + \infty } \right)\)thỏa mãn \(F\left( 1 \right) = \ln 3\). Giá trị của \({e^{F\left( {2021} \right)}} - {e^{F\left( {2020} \right)}}\) thuộc khoảng nào? A. \(\left( {\frac{1}{{10}};\frac{1}{5}} \right)\). B. \(\left( {0;\frac{1}{{10}}} … [Đọc thêm...] vềCho \(F\left( x \right)\)là nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2\sqrt {x\left( {x + 3} \right)} }}\)trên \(\left( {0; + \infty } \right)\)thỏa mãn \(F\left( 1 \right) = \ln 3\). Giá trị của \({e^{F\left( {2021} \right)}} – {e^{F\left( {2020} \right)}}\) thuộc khoảng nào?

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), thỏa mãn \(f\left( x \right) = x\left( {1 + \frac{1}{{\sqrt x }} – f’\left( x \right)} \right)\,,\,\forall x \in \left( {0\,; + \infty } \right)\) và\(f\left( 4 \right) = \frac{4}{3}\). Giá trị của\(\int\limits_1^4 {\left( {{x^2} – 1} \right)f’\left( x \right){\rm{d}}x} \) bằng

Ngày 17/03/2021 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:TN THPT 2021, Trắc nghiệm Tích phân hàm ẩn

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), thỏa mãn \(f\left( x \right) = x\left( {1 + \frac{1}{{\sqrt x }} - f'\left( x \right)} \right)\,,\,\forall x \in \left( {0\,; + \infty } \right)\) và\(f\left( 4 \right) = \frac{4}{3}\). Giá trị của\(\int\limits_1^4 {\left( {{x^2} - 1} \right)f'\left( x \right){\rm{d}}x} \) bằng A. \(\frac{{457}}{{15}}\). B. … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), thỏa mãn \(f\left( x \right) = x\left( {1 + \frac{1}{{\sqrt x }} – f’\left( x \right)} \right)\,,\,\forall x \in \left( {0\,; + \infty } \right)\) và\(f\left( 4 \right) = \frac{4}{3}\). Giá trị của\(\int\limits_1^4 {\left( {{x^2} – 1} \right)f’\left( x \right){\rm{d}}x} \) bằng

Có bao nhiêu giá trị nguyên của tham số m để phương trình \(3f\left( {{x^2} – 4x} \right) = m\) có ít nhất ba nghiệm thực phân biệt thuộc khoảng \(\left( {0; + \infty } \right)\)?

Ngày 06/03/2021 Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:TN THPT 2021, Trắc nghiệm tương giao đồ thi vận dụng

Câu hỏi: Cho hàm số f(x) có bảng biến thiên như sau Có bao nhiêu giá trị nguyên của tham số m để phương trình \(3f\left( {{x^2} - 4x} \right) = m\) có ít nhất ba nghiệm thực phân biệt thuộc khoảng \(\left( {0; + \infty } \right)\)? ====== Đặt \(u = {x^2} - 4x\) (1) Ta có BBT sau: Ta thấy: + Với u < -4, phương trình (1) vô nghiệm. + Với u = -4, phương … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số m để phương trình \(3f\left( {{x^2} – 4x} \right) = m\) có ít nhất ba nghiệm thực phân biệt thuộc khoảng \(\left( {0; + \infty } \right)\)?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 10
  • Trang 11
  • Trang 12
  • Trang 13
  • Trang 14
  • Interim pages omitted …
  • Trang 703
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.