Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq 2^{n}; (|x|\leq 1), n \geq 1$ Lời giải Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) … [Đọc thêm...] vềĐề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq 2^{n}; (|x|\leq 1), n \geq 1$
Các dạng bất đẳng thức khác
Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10} \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq 2\sqrt{ a^2+c^2} $
Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10} \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq 2\sqrt{ a^2+c^2} $ Lời giải Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10} \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq 2\sqrt{ a^2+c^2} $ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10} \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq 2\sqrt{ a^2+c^2} $
Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ 3}bc+c^2 } \geq \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2 }$
Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ 3}bc+c^2 } \geq \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2 }$ Lời giải Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ 3}bc+c^2 } \geq \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2 }$
Đề bài: Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$
Đề bài: Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$ Lời giải Đề bài: Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu … [Đọc thêm...] vềĐề bài: Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$
Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $
Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $ Lời giải Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $ Lời giải Ta có : $ \sum\limits_{k = 0}^{2n - 1} {(-t)^k} = \frac{1-t^{2n}}{1+t} $\Rightarrow \int\limits_{0}^{1} … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $
Đề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$
Đề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Đề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Xét hàm số $ y = \ln x , x \geq 1 $ thì hàm số ngược của nó là $x=e^y$Từ đồ thị , ta có : $S_1+S_2 \geq S{OBCA} … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$
Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in N$
Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in N$ Lời giải Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in N$
Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]
Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)] Lời giải Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)] Lời giải $ \forall t\geq 0 $, ta có : $\frac{1}{1+t} \geq 1 -t $ Dấu $"=" \Leftrightarrow t=0$$\Rightarrow \int\limits_{y}^{x} \frac{dt}{1+t} > \int\limits_{y}^{x} … [Đọc thêm...] vềĐề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]
Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\) (1)
Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\) (1) Lời giải Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\) (1) Lời giải Do 2 vế của (1) không âm, bình phương 2 vế ta được \(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\) (1)
Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)
Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n - k}^n \le {\left( {C_{2n}^n} \right)^2}\) Lời giải Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n - k}^n \le {\left( {C_{2n}^n} \right)^2}\) Lời giải … [Đọc thêm...] vềĐề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)