• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Các dạng bất đẳng thức khác

Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$ Lời giải Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) … [Đọc thêm...] vềĐề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $ Lời giải Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $

Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$ Lời giải Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$

Đề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức    $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức    $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$ Lời giải Đề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu … [Đọc thêm...] vềĐề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức    $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$

Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $ Lời giải Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $ Lời giải Ta có : $ \sum\limits_{k = 0}^{2n - 1} {(-t)^k} = \frac{1-t^{2n}}{1+t} $\Rightarrow \int\limits_{0}^{1} … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $

Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Xét hàm số $ y = \ln x , x \geq 1 $ thì hàm số ngược của nó là $x=e^y$Từ đồ thị , ta có : $S_1+S_2 \geq S{OBCA} … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$

Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n}  \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in  N$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n}  \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in  N$ Lời giải Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n}  \right )^3 }- … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n}  \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in  N$

Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)] Lời giải Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)] Lời giải $ \forall t\geq 0 $, ta có : $\frac{1}{1+t} \geq 1 -t $     Dấu $"=" \Leftrightarrow  t=0$$\Rightarrow \int\limits_{y}^{x} \frac{dt}{1+t} > \int\limits_{y}^{x} … [Đọc thêm...] vềĐề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]

Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\)  (1)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\)  (1) Lời giải Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\)  (1) Lời giải Do 2 vế của (1) không âm, bình phương 2 vế ta được \(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\)  (1)

Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n - k}^n \le {\left( {C_{2n}^n} \right)^2}\) Lời giải Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n - k}^n \le {\left( {C_{2n}^n} \right)^2}\) Lời giải … [Đọc thêm...] vềĐề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)

  • Trang 1
  • Trang 2
  • Trang 3
  • Interim pages omitted …
  • Trang 12
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.