Bất đẳngThức Tuyển Chọn.pdf ========== booktoan.com chia sẻ đến các ĐỀ THI HK2 MÔN TOÁN năm học 2022 - 2023. TÀI LIỆU, Đề THI ĐỀU có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong CÁC kỳ thi năm nay. NGUỒN: BOOKTOAN.COM sưu tập trên internet.... ———– xem file de thi — ============= xem online … [Đọc thêm...] vềBất đẳngThức Tuyển Chọn.pdf
Bất đẳng thức - Bài tập tự luận
Cho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x – y} \right)}^2}}} + \frac{1}{{{{\left( {y – z} \right)}^2}}} + \frac{1}{{{{\left( {z – x} \right)}^2}}}\).
Cho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x - y} \right)}^2}}} + \frac{1}{{{{\left( {y - z} \right)}^2}}} + \frac{1}{{{{\left( {z - x} \right)}^2}}}\). Lời giải Không mất tính tổng quát, giả sử \(0 \le x < y < z \le 2\). Áp dụng BĐT Cauchy AM-GM ta … [Đọc thêm...] vềCho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x – y} \right)}^2}}} + \frac{1}{{{{\left( {y – z} \right)}^2}}} + \frac{1}{{{{\left( {z – x} \right)}^2}}}\).
Cho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a – 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\)
Cho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a - 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\). Lời giải Ta phải chứng minh \(\frac{{\ln a}}{{a - 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\) (1) với \(1 \ne a > 0\). Xét hai trường hợp: +) Trường hợp 1: \(a > 1\) \(\left( 1 \right) \Leftrightarrow \left( {a + \sqrt[3]{a}} … [Đọc thêm...] vềCho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a – 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\)
Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(a^{3}+b^{3}\geq a^{2}b+ab^{2}\) (1)
Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(a^{3}+b^{3}\geq a^{2}b+ab^{2}\) (1) Lời giải Ta có: (1) \(\Leftrightarrow (a^{3}+b^{3})-(a^{2}b+ab^{2})\geq 0 \\\Leftrightarrow (a^{3}-a^{2}b)-(ab^{2}-b^{3})\geq 0\) \(\Leftrightarrow a^{2}(a-b)-b^{2}(a-b)\geq 0 \\\Leftrightarrow (a^{2}-b^{2})(a-b)\geq 0\) \(\Leftrightarrow (a-b)^{2}(a+b)\geq 0\) đúng Vậy ta … [Đọc thêm...] vềĐề bài: Cho \(a,b>0\). Chứng minh rằng: \(a^{3}+b^{3}\geq a^{2}b+ab^{2}\) (1)
Đề bài: Chứng minh:a) nếu $x\geq y \geq 0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$
Đề bài: Chứng minh:a) nếu $x\geq y \geq 0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$ Lời giải a) Với $x \geq y \geq 0$ ta có:$\frac{x}{1+x} \geq \frac{y}{1+y} \Leftrightarrow x(1+y)\geq y(1+x)\Leftrightarrow x+xy \geq y+xy \Leftrightarrow x \geq y $ ( đúng)b) Vì $|a-b|\leq |a|+|b|$ … [Đọc thêm...] vềĐề bài: Chứng minh:a) nếu $x\geq y \geq 0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$
Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}
Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z} Lời giải Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z} Lời giải ========= Chuyên mục: Bất đẳng thức Côsi … [Đọc thêm...] vềĐề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}
Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$.
Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$. Lời giải Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$. Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$.
Đề bài: Xác định dạng của tam giác nếu $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2 (1)$
Đề bài: Xác định dạng của tam giác nếu $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2 (1)$ Lời giải Đề bài: Xác định dạng của tam giác nếu $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2 (1)$ Lời giải Áp dụng bất đẳng thức cô si ta có :$(p-a)(p-b)(p-c) \leq \left ( \frac{p-a+p-b+p-c }{ 3} \right )^3 = … [Đọc thêm...] vềĐề bài: Xác định dạng của tam giác nếu $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2 (1)$
Đề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$
Đề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$ Lời giải Đề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$
Đề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
Đề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$ Lời giải Đề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$ Lời giải Ta có: $ \displaystyle a+b=1 … [Đọc thêm...] vềĐề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
