• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Bất đẳng thức - Bài tập tự luận

Cho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x – y} \right)}^2}}} + \frac{1}{{{{\left( {y – z} \right)}^2}}} + \frac{1}{{{{\left( {z – x} \right)}^2}}}\).

Đăng ngày: 27/10/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:BDT HSG 12

Cho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x - y} \right)}^2}}} + \frac{1}{{{{\left( {y - z} \right)}^2}}} + \frac{1}{{{{\left( {z - x} \right)}^2}}}\). Lời giải Không mất tính tổng quát, giả sử \(0 \le x < y < z \le 2\). Áp dụng BĐT Cauchy AM-GM ta … [Đọc thêm...] vềCho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x – y} \right)}^2}}} + \frac{1}{{{{\left( {y – z} \right)}^2}}} + \frac{1}{{{{\left( {z – x} \right)}^2}}}\).

Cho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a – 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\)

Đăng ngày: 23/10/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bat dang thuc va cuc tri, BDT HSG 12

Cho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a - 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\). Lời giải Ta phải chứng minh \(\frac{{\ln a}}{{a - 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\) (1) với \(1 \ne a > 0\). Xét hai trường hợp: +) Trường hợp 1: \(a > 1\) \(\left( 1 \right) \Leftrightarrow \left( {a + \sqrt[3]{a}} … [Đọc thêm...] vềCho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a – 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\)

Đề bài: Chứng tỏ rằng:   $ x^2 – 6x + 5 \ge – 4       \forall x $

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng tỏ rằng:   $ x^2 - 6x + 5 \ge - 4       \forall x $ Lời giải Ta có:   $ {x^2} - 6x + 5 = {\left( {x - 3} \right)^2} - 4 \ge  - 4,\forall x $ Dấu “=” xảy ra  $  \Leftrightarrow x = 3 $ ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng tỏ rằng:   $ x^2 – 6x + 5 \ge – 4       \forall x $

Đề bài: Cho \(a>0\). Chứng minh rằng: \(\sqrt{a}+\sqrt{a+2}<2\sqrt{a+1}\)   (1)

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho \(a>0\). Chứng minh rằng: \(\sqrt{a}+\sqrt{a+2}<2\sqrt{a+1}\)   (1) Lời giải Ta có: (1) \(\Leftrightarrow (\sqrt{a}+\sqrt{a+2})^{2}\leq 4(a+1)\)\(\Leftrightarrow a+a+2+2\sqrt{a(a+2)}\leq 4(a+1)\)\(\Leftrightarrow 2\sqrt{a(a+2)}\leq 2(a+1) \\\Leftrightarrow \sqrt{a(a+2)}\leq a+1\)\(\Leftrightarrow a(a+2)\leq (a+1)^{2} \\\Leftrightarrow 2a+a^{2}\leq … [Đọc thêm...] vềĐề bài: Cho \(a>0\). Chứng minh rằng: \(\sqrt{a}+\sqrt{a+2}<2\sqrt{a+1}\)   (1)

Đề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$ Lời giải hướng dẫn: dùng bất đẳng thức giá trị tuyệt đốiThêm lời giải chi tiết ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$

Đề bài: Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$.

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$. Lời giải Đề bài: Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$. Lời giải Cần lời giải chi tiết. ========= Chuyên … [Đọc thêm...] vềĐề bài: Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$.

Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$. Lời giải Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$. Lời giải Theo bất đẳng thức Côsi ta có:$\sqrt[4]{1-x^2}=\sqrt[4]{1-x}.\sqrt[4]{1+x}\leq … [Đọc thêm...] vềĐề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.

Đề bài: Chứng minh rằng: \((1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^{3}\) với \(a,b,c\geq 0\).

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng: \((1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^{3}\) với \(a,b,c\geq 0\). Lời giải Đề bài: Chứng minh rằng: \((1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^{3}\) với \(a,b,c\geq 0\). Lời giải Ta có: \((1+a)(1+b)(1+c)=1+a+b+c+ab+bc+ca+abc\)Ta lại có: \(\left\{ \begin{array}{l}a+b+c\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng: \((1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^{3}\) với \(a,b,c\geq 0\).

Đề bài: Chứng minh rằng: $C^{0}_{n}+C^{1}_{n}.n+C^{2}_{n}.n^{2}+…+C^{n}_{n}.n^{n}\geq 2^{n}.n!$ với $\forall n \in Z,n\geq 2$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng: $C^{0}_{n}+C^{1}_{n}.n+C^{2}_{n}.n^{2}+...+C^{n}_{n}.n^{n}\geq 2^{n}.n!$ với $\forall n \in Z,n\geq 2$ Lời giải Đề bài: Chứng minh rằng: $C^{0}_{n}+C^{1}_{n}.n+C^{2}_{n}.n^{2}+...+C^{n}_{n}.n^{n}\geq 2^{n}.n!$ với $\forall n \in Z,n\geq 2$ Lời giải Ta có: $n!=1.2.3...n \leq … [Đọc thêm...] vềĐề bài: Chứng minh rằng: $C^{0}_{n}+C^{1}_{n}.n+C^{2}_{n}.n^{2}+…+C^{n}_{n}.n^{n}\geq 2^{n}.n!$ với $\forall n \in Z,n\geq 2$

Đề bài: Cho ba số $a,b,c$ thỏa mãn $a\geq 1,b\geq 1,c\geq 1$. Chứng minh rằng:     $\sqrt{(a+1)(b-1)}+\sqrt{(b+1)(c-1)}+\sqrt{(c+1)(a-1)}

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho ba số $a,b,c$ thỏa mãn $a\geq 1,b\geq 1,c\geq 1$. Chứng minh rằng:     $\sqrt{(a+1)(b-1)}+\sqrt{(b+1)(c-1)}+\sqrt{(c+1)(a-1)} Lời giải Đề bài: Cho ba số $a,b,c$ thỏa mãn $a\geq 1,b\geq 1,c\geq 1$. Chứng minh rằng:     $\sqrt{(a+1)(b-1)}+\sqrt{(b+1)(c-1)}+\sqrt{(c+1)(a-1)} Lời giải Ta lần … [Đọc thêm...] vềĐề bài: Cho ba số $a,b,c$ thỏa mãn $a\geq 1,b\geq 1,c\geq 1$. Chứng minh rằng:     $\sqrt{(a+1)(b-1)}+\sqrt{(b+1)(c-1)}+\sqrt{(c+1)(a-1)}

  • Chuyển tới trang 1
  • Chuyển tới trang 2
  • Chuyển tới trang 3
  • Interim pages omitted …
  • Chuyển tới trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.