Bất đẳngThức Tuyển Chọn.pdf ========== booktoan.com chia sẻ đến các ĐỀ THI HK2 MÔN TOÁN năm học 2022 - 2023. TÀI LIỆU, Đề THI ĐỀU có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong CÁC kỳ thi năm nay. NGUỒN: BOOKTOAN.COM sưu tập trên internet.... ———– xem file de thi — ============= xem online … [Đọc thêm...] vềBất đẳngThức Tuyển Chọn.pdf
Bất đẳng thức - Bài tập tự luận
Cho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x – y} \right)}^2}}} + \frac{1}{{{{\left( {y – z} \right)}^2}}} + \frac{1}{{{{\left( {z – x} \right)}^2}}}\).
Cho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x - y} \right)}^2}}} + \frac{1}{{{{\left( {y - z} \right)}^2}}} + \frac{1}{{{{\left( {z - x} \right)}^2}}}\). Lời giải Không mất tính tổng quát, giả sử \(0 \le x < y < z \le 2\). Áp dụng BĐT Cauchy AM-GM ta … [Đọc thêm...] vềCho \(x,y,z\) là các số thực thay đổi, đôi một khác nhau thuộc đoạn \(\left[ {0;2} \right]\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{{{\left( {x – y} \right)}^2}}} + \frac{1}{{{{\left( {y – z} \right)}^2}}} + \frac{1}{{{{\left( {z – x} \right)}^2}}}\).
Cho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a – 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\)
Cho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a - 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\). Lời giải Ta phải chứng minh \(\frac{{\ln a}}{{a - 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\) (1) với \(1 \ne a > 0\). Xét hai trường hợp: +) Trường hợp 1: \(a > 1\) \(\left( 1 \right) \Leftrightarrow \left( {a + \sqrt[3]{a}} … [Đọc thêm...] vềCho \(1 \ne a > 0\), chứng minh rằng: \(\frac{{\ln a}}{{a – 1}} \le \frac{{1 + \sqrt[3]{a}}}{{a + \sqrt[3]{a}}}\)
Đề bài: Chứng minh với mọi $x,y,z$ không âm ta luôn có: $xyz \geq (x+y-z)(x+z-y)(y+z-x) (1)$
Đề bài: Chứng minh với mọi $x,y,z$ không âm ta luôn có: $xyz \geq (x+y-z)(x+z-y)(y+z-x) (1)$ Lời giải Giải Để ý: Với $x,y,z$ không âm thì trong ba số $a=(y+z-x), b=(x+z-y), c=(x+y-z)$ không thể có quá một số âmGiả sử có hai số âm, do tính bình đẳng của $x,y,z$ giả sử $\begin{cases}x+y-zCộng vế theo vế ta có: $2x+ Nếu … [Đọc thêm...] vềĐề bài: Chứng minh với mọi $x,y,z$ không âm ta luôn có: $xyz \geq (x+y-z)(x+z-y)(y+z-x) (1)$
Đề bài: Giả sử $a,b,\alpha > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$ (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$ (2)
Đề bài: Giả sử $a,b,\alpha > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$ (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$ (2) Lời giải ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Giả sử $a,b,\alpha > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$ (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$ (2)
Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD} =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC} ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b} .$$2.$ Chứng minh rằng $\forall \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$
Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD} =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC} ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b} .$$2.$ Chứng minh rằng … [Đọc thêm...] vềĐề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD} =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC} ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b} .$$2.$ Chứng minh rằng $\forall \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$
Đề bài: Cho $x,y>0; x+y
Đề bài: Cho $x,y>0; x+y Lời giải Đề bài: Cho $x,y>0; x+y Lời giải Ta có thể viết lại $P$ dưới dạng:$P=(1+x)+\frac{x^2}{1-x}+(1+y)+\frac{y^2}{1-y}+\frac{1}{x+y}-2$$=\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{x+y}-2 (1)$Theo bất đẳng thức Côsi cơ bản ta … [Đọc thêm...] vềĐề bài: Cho $x,y>0; x+y
Đề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\).
Đề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\). Lời giải Đề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\). Lời giải Áp dụng BĐT Cauchy cho 2 số không âm ta có\(\frac{bc}{a}+\frac{ca}{b}\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\).
Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất.
Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất. Lời giải Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất. Lời giải Xét $a,b>0$ sao cho $a+b=16$. Ta có $(a+b)^2\leq 2(a^2+b^2)$$\Rightarrow … [Đọc thêm...] vềĐề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất.
Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$
Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$ Lời giải Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$ Lời giải Nhận xét rằng $ \displaystyle 4b(a-b)\leq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$