• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Khối tròn xoay / 3: Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng \(100\,{\rm{c}}{{\rm{m}}^3}\), bán kính đáy \(x\) cm, chiều cao \(h\) cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất. Khi đó, kích thước của \(x\) và \(h\) gần bằng số nào nhất trong các số dưới đây để công ty X tiết kiệm được vật liệu nhất?

3: Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng

\(100\,{\rm{c}}{{\rm{m}}^3}\), bán kính đáy \(x\) cm, chiều cao \(h\) cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất. Khi đó,

kích thước của \(x\) và \(h\) gần bằng số nào nhất trong các số dưới đây để công ty X tiết kiệm được vật liệu nhất?

Ngày 14/06/2021 Thuộc chủ đề:Trắc nghiệm Khối tròn xoay Tag với:TN THPT 2021, TN tron xoay thuc te, Tuong tu cau 44 de toan minh hoa

DẠNG TOÁN 44 KHỐI TRÒN XOAY BÀI TOÁN THỰC TẾ – phát triển theo đề tham khảo Toán 2021
  Theo đề tham khảo Toán 2021 của Bộ GD&ĐT
ĐỀ BÀI:
3: Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng

\(100\,{\rm{c}}{{\rm{m}}^3}\), bán kính đáy \(x\) cm, chiều cao \(h\) cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất. Khi đó,

kích thước của \(x\) và \(h\) gần bằng số nào nhất trong các số dưới đây để công ty X tiết kiệm được vật liệu nhất?

A. \(h \approx 6,476cm\) và \(x \approx 2,217cm\).

B. \(h \approx 6,476cm\) và \(x \approx 2,217cm\).

C. \(h \approx 5,031cm\) và \(x \approx 2,515cm\).

D. \(h \approx 3,261cm\) và \(x \approx 3,124cm\).

Lời giải

Ta có: \(V = \pi {x^2}h.\)

Theo giả thiết thể tích hình trụ bằng 100 cm3 nên: \(V = 100 \Leftrightarrow \pi {x^2}h = 100 \Leftrightarrow h = \frac{{100}}{{\pi {x^2}}}{\kern 1pt} {\kern 1pt} (*)\)

Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.

\({S_{tp}} = {S_{xq}} + 2.{S_d}\) (**).

Thay (*) vào (**) ta có: \({S_{tp}} = 2\pi ({x^2} + \frac{{100}}{{\pi x}})\).

\({x^2} + \frac{{100}}{{\pi x}} = {x^2} + \frac{{50}}{{\pi x}} + \frac{{50}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{2500.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{2500}}{{{\pi ^2}}}}}\) ( Bất đẳng thức Cosi cho 3 số dương).

Dấu bằng xảy ra khi \(x = \sqrt[3]{{\frac{{50}}{\pi }}} \approx 2,515\).

 

Bài liên quan:

  1. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\) , ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\) . Diện tích xung quanh của \((T)\) bằng

  2. Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng
  3. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\) . Đường thẳng đi qua \(A\) , cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  4. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  5. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\) ?

  6. Cho hàm số \(f\left( x \right) = {x^4} – 10{x^3} + 24{x^2} + \left( {4 – m} \right)x\) , với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng \(7\) điểm cực trị.

  7. Cho hai hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + x\) và \(g(x) = m{x^3} + n{x^2} – 2x\) ; với \(a,b,c,m,n \in \mathbb{R}\) . Biết hàm số \(y = f(x) – g(x)\) có ba điểm cực trị là \( – 1,2\) và 3. Diện tích hình phẳng giới hạn bởi hai đương \(y = f'(x)\) và \(y = g'(x)\) bằng

  8. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) trong hình bên. Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { – 1} \right) =  – 1\) . Giá trị của \(F\left( 5 \right) + F\left( 6 \right)\) bằng 

  9. Có bao nhiêu số nguyên dương y sao cho tồn tại số thực \(x \in \left( {1;\,6} \right)\) thỏa mãn \(4\left( {x – 1} \right){e^x} = y\left( {{e^x} + xy – 2{x^2} – 3} \right)\) ?
  10. Trong không gian \(Oxyz\) cho mặt cầu \((S):{(x – 2)^2} + {(y – 3)^2} + {(z + 1)^2} = 1\) . Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\) .
  11. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ. 

    Đặt \(g\left( x \right) = 3f\left( {f\left( x \right)} \right) + 4\). Số điểm cực trị của hàm số \(g\left( x \right)\) là

  12. Cho hàm số \(y = f(x)\) xác định liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên.

    Số nghiệm thuộc đoạn \(\left[ {0;4} \right]\) của phương trình \(\left| {f({x^2} – 2x)} \right| = 2\) là

  13. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {2{x^3} + 3{x^2}} \right)\) là

  14. [SỞ BN L1] Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
  15. [KIM THANH HẢI DƯƠNG 2020] Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên sau

    Số nghiệm thực của phương trình \(5f\left( {1 – 2x} \right) + 1 = 0\)

Reader Interactions

Bình luận

  1. Hoàng Hoài Nam viết

    05/07/2021 lúc 11:38 chiều

    mn cho hỏi sao ko áp dụng bất đẳng thức cosi cho 2 số

    Bình luận

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.