• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Blog / Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng

Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng

Ngày 24/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Khối đa diện Tag với:TN THPT 2021, Trắc nghiệm thể tích hình lăng trụ

Câu hỏi:
Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \) . Thể tích của khối lăng trụ đã cho bằng

A. \(\frac{{8\sqrt 3 }}{{27}}{a^3}\) .

B. \(8\sqrt 3 {a^3}\) .

C. \(\frac{{8\sqrt 3 }}{3}{a^3}\) .

D. \(\frac{{8\sqrt 3 }}{9}{a^3}\) .

LỜI GIẢI CHI TIẾT

Cho khối lăng trụ tam giác đều <strong>(ABC.A'B'C')</strong> có cạnh bên bằng <strong>(2a)</strong> , góc giữa hai mặt phẳng <strong>(left( {A'BC} right))</strong> và <strong>(left( {ABC} right))</strong> bằng 1

Gọi \(M\) là trung điểm \(BC\) .

Dễ thấy \(BC \bot \left( {A’MA} \right)\) và \(\left( {A’BC} \right) \cap \left( {ABC} \right) = BC\) . Suy ra \(\left( {\left( {A’BC} \right);\left( {ABC} \right)} \right) = \widehat {A’MA} = 60^\circ \) .

Ta có: \(\tan \widehat {A’MA} = \frac{{AA’}}{{AM}} \Rightarrow AM = \frac{{AA’}}{{\tan \widehat {A’MA}}} = \frac{{2a}}{{\tan 60^\circ }} = \frac{{2a}}{{\sqrt 3 }}\) .

⇒ \(AB = \frac{2}{{\sqrt 3 }}AM = \frac{{4a}}{3}\) ⇒ \({S_{\Delta ABC}} = \frac{{\sqrt 3 }}{4}.{\left( {\frac{{4a}}{3}} \right)^2} = \frac{{4\sqrt 3 {a^2}}}{9}\) .

Vậy \({V_{ABC.A’B’C’}} = AA’.{S_{\Delta ABC}} = 2a.\frac{{4\sqrt 3 {a^2}}}{9} = \frac{{8\sqrt 3 {a^3}}}{9}\) .

=======

Bài liên quan:

  1. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\) , ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\) . Diện tích xung quanh của \((T)\) bằng

  2. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\) . Đường thẳng đi qua \(A\) , cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  3. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  4. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\) ?

  5. Cho hàm số \(f\left( x \right) = {x^4} – 10{x^3} + 24{x^2} + \left( {4 – m} \right)x\) , với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng \(7\) điểm cực trị.

  6. Cho hai hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + x\) và \(g(x) = m{x^3} + n{x^2} – 2x\) ; với \(a,b,c,m,n \in \mathbb{R}\) . Biết hàm số \(y = f(x) – g(x)\) có ba điểm cực trị là \( – 1,2\) và 3. Diện tích hình phẳng giới hạn bởi hai đương \(y = f'(x)\) và \(y = g'(x)\) bằng

  7. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) trong hình bên. Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { – 1} \right) =  – 1\) . Giá trị của \(F\left( 5 \right) + F\left( 6 \right)\) bằng 

  8. Có bao nhiêu số nguyên dương y sao cho tồn tại số thực \(x \in \left( {1;\,6} \right)\) thỏa mãn \(4\left( {x – 1} \right){e^x} = y\left( {{e^x} + xy – 2{x^2} – 3} \right)\) ?
  9. Trong không gian \(Oxyz\) cho mặt cầu \((S):{(x – 2)^2} + {(y – 3)^2} + {(z + 1)^2} = 1\) . Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\) .
  10. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ. 

    Đặt \(g\left( x \right) = 3f\left( {f\left( x \right)} \right) + 4\). Số điểm cực trị của hàm số \(g\left( x \right)\) là

  11. Cho hàm số \(y = f(x)\) xác định liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên.

    Số nghiệm thuộc đoạn \(\left[ {0;4} \right]\) của phương trình \(\left| {f({x^2} – 2x)} \right| = 2\) là

  12. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {2{x^3} + 3{x^2}} \right)\) là

  13. [SỞ BN L1] Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
  14. [KIM THANH HẢI DƯƠNG 2020] Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên sau

    Số nghiệm thực của phương trình \(5f\left( {1 – 2x} \right) + 1 = 0\)

  15. Cho hàm số bậc bốn \(y = f\left( x \right).\) Đồ thị hàm số \(y = f’\left( x \right)\) như hình vẽ bên.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Sách Giáo Khoa lớp 11
  • Sách Giáo Khoa lớp 7
  • Sách Giáo Khoa lớp 2
  • Sách Giáo Khoa lớp 6
  • Sách Giáo Khoa lớp 12
  • Sách Giáo Khoa lớp 9
  • Sách Giáo Khoa lớp 5

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.