Cho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng? A. \(\int {f(x)dx = \frac{{2{x^3}}}{3} + \frac{3}{{2x}} + C} \). B. \(\int {f(x)dx = \frac{{2{x^3}}}{3} - \frac{3}{x} + C} \). C. \(\int {f(x)dx = \frac{{2{x^3}}}{3} + \frac{3}{x} + C} \). D. \(\int {f(x)dx = 2{x^3} - \frac{3}{x} + C} \). Lời giải: Ta có \(\int {f(x)dx = \int … [Đọc thêm...] vềCho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng?
On thi nguyen ham tich phan
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + … + F\left( {2023} \right)\) bằng
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2023} \right)\) bằng A. \(2022\frac{1}{{2024}}\). B. … [Đọc thêm...] vềCho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + … + F\left( {2023} \right)\) bằng
Biết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = – \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng
Biết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = - \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng A. \( - \frac{1}{2}{e^2}\). B. \(\frac{1}{2}e\). C. \(0\). D. \(\frac{1}{2}{e^2}\). Lời giải: Đặt \(t = {x^2} + 1 \Rightarrow dt = 2xdx \Rightarrow xdx = \frac{1}{2}dt\). Lại có \(t = {x^2} + 1 \Rightarrow {x^2} = t - … [Đọc thêm...] vềBiết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = – \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng
\(\int {\frac{{2x – 1}}{{x + 1}}{\rm{d}}x} \) bằng
\(\int {\frac{{2x - 1}}{{x + 1}}{\rm{d}}x} \) bằng A. \(2x - 3\ln \left| {x + 1} \right| + C\). B. \(2x + 3\ln \left| {x + 1} \right| + C\) C. \(2x - 3\ln \left| {x - 1} \right| + C\). D. \(x - 3\ln \left| {x + 1} \right| + C\). Lời giải: \(\int {\frac{{2x - 1}}{{x + 1}}{\rm{d}}x} = \int {\frac{{2\left( {x + 1} \right) - 3}}{{x + 1}}{\rm{d}}x} = \int {\left( … [Đọc thêm...] về\(\int {\frac{{2x – 1}}{{x + 1}}{\rm{d}}x} \) bằng
Họ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là
Họ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là A. \({x^2} + \left( {x - 1} \right){e^x} + C\). B. \(\frac{{{x^2}}}{2} + x{e^x} + C\). C. \(\frac{{{x^2}}}{2} + \left( {1 - x} \right){e^x} + C\). D. \(\frac{{{x^2}}}{2} + \left( {x - 1} \right){e^x} + C\). Lời giải: Ta có \(\int {x\left( {1 + {e^x}} \right){\rm{d}}} x = \int {\left( {x + … [Đọc thêm...] vềHọ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là
Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^{2021}}}}{{\sqrt {{x^2} + 1} }}\) và \(F\left( 0 \right) = 1\). Giá trị của \(F\left( 1 \right)\) bằng
Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^{2021}}}}{{\sqrt {{x^2} + 1} }}\) và \(F\left( 0 \right) = 1\). Giá trị của \(F\left( 1 \right)\) bằng A. \(\frac{{{{\left( {1 + \sqrt 2 } \right)}^{2020}} - 2021}}{{2020}}\). B. \(\frac{{{{\left( {1 + \sqrt 2 } \right)}^{2021}} + … [Đọc thêm...] vềCho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^{2021}}}}{{\sqrt {{x^2} + 1} }}\) và \(F\left( 0 \right) = 1\). Giá trị của \(F\left( 1 \right)\) bằng
Để tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó
Để tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó A. \(I = \int {{e^{\tan t}}{\rm{dt}}} \) B. \(I = \int {{e^t}{\rm{dt}}} \) C. \(I = \int {{\rm{tdt}}} \). D. \(I = \int {\frac{{{e^t}}}{{co{s^2}t}}{\rm{dt}}} \). Lời giải: Đặt \(t = \tan x \Rightarrow dt = \frac{1}{{co{s^2}x}}dx … [Đọc thêm...] vềĐể tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó
Cho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng?
Cho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng? A.\(\int {f\left( x \right)dx} = \frac{x}{2} - \frac{{\sin 2x}}{4} + C\). B. \(\int {f\left( x \right)dx} = \frac{{2x + \sin 2x}}{4} + C\). C. \(\int {f\left( x \right)dx} = {\sin ^2}x + C\). D. \(\int {f\left( x \right)dx} = \sin 2x + C\). Lời giải: \(\int {f\left( x \right)dx} = … [Đọc thêm...] vềCho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng?
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng A. \(\frac{1}{3}\). B. \(\frac{1}{9}\). C. \(\frac{8}{3}\). D. \(\frac{8}{9}\). Lời giải: Đặt \(I = \int {\sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}} dx\) \(t = \sqrt {{{\ln … [Đọc thêm...] vềGọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng
Biết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng?
Biết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng? A. \(\int {f'\left( x \right)dx = {e^{2x}} + C} \). B. \(\int {f'\left( x \right)dx = \frac{1}{2}{e^{2x}} + C} \). C. \(\int {f'\left( x \right)dx = {e^{2x + 1}} + C} \). D. \(\int {f'\left( x \right)dx = 2{e^{2x}} + C} \). Lời … [Đọc thêm...] vềBiết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng?