Cho hàm số $f(x)=a x^{3}+b x^{2}+c x+1,(a \neq 0)$ với các số thực $a, b, c$ thoả mãn $a+b+c>2019$ và $\lim _{x \rightarrow+\infty} f(x)=-\infty .$ Số điềm cực trị của hàm số $y=|g(x-2019)|$ với $g(x)=f(x)-2020$ làA. 4B. 2C. 5D. 3 Lời giải Chọn CTa có số điểm cực trị của hàm số $y=|g(x-2019)|$ bằng Số điểm cựa trị của hàm số$$y=|g(x)|$$Ta có $\lim _{x \rightarrow+\infty} … [Đọc thêm...] vềCho hàm số $f(x)=a x^{3}+b x^{2}+c x+1,(a \neq 0)$ với các số thực $a, b, c$ thoả mãn $a+b+c>2019$ và $\lim _{x \rightarrow+\infty} f(x)=-\infty .$ Số điềm cực trị của hàm số $y=|g(x-2019)|$ với $g(x)=f(x)-2020$ là
Kết quả tìm kiếm cho: ty so
[VDC] Gọi $S$ là tập hợp tất cả các giá trị nguyên của $m$ sao cho hàm số $y=\left|-x^{4}+m x^{3}+2 m^{2} x^{2}+m-1\right|$ đồng biếnn trên $(1 ;+\infty)$
Câu 48: Gọi $S$ là tập hợp tất cả các giá trị nguyên của $m$ sao cho hàm số $y=\left|-x^{4}+m x^{3}+2 m^{2} x^{2}+m-1\right|$ đồng biếnn trên $(1 ;+\infty)$. Tổng tất cả các phần tử của $S$ là A. 0 B. 2 C. -1 D. -2. Bài giải ========== … [Đọc thêm...] về[VDC] Gọi $S$ là tập hợp tất cả các giá trị nguyên của $m$ sao cho hàm số $y=\left|-x^{4}+m x^{3}+2 m^{2} x^{2}+m-1\right|$ đồng biếnn trên $(1 ;+\infty)$
Câu 48: (MH Toan 2020) Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $xf\left( {{x}^{3}} \right)+f\left( 1-{{x}^{2}} \right)=-{{x}^{10}}+{{x}^{6}}-2x$, $\forall x\in\mathbb{R}$. Khi đó $\displaystyle\int^0_{-1}f(x)\mathrm{d}x$ bằng
Câu 48: (MH Toan 2020) Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $xf\left( {{x}^{3}} \right)+f\left( 1-{{x}^{2}} \right)=-{{x}^{10}}+{{x}^{6}}-2x$, $\forall x\in\mathbb{R}$. Khi đó $\displaystyle\int^0_{-1}f(x)\mathrm{d}x$ bằng A. \( - \frac{{17}}{{20}}\). B. \( - \frac{{13}}{4}\). C. \(\frac{{17}}{4}\). D. \( - 1\). Đáp án: B Ta có \(xf\left( {{x^3}} \right) + … [Đọc thêm...] vềCâu 48: (MH Toan 2020) Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $xf\left( {{x}^{3}} \right)+f\left( 1-{{x}^{2}} \right)=-{{x}^{10}}+{{x}^{6}}-2x$, $\forall x\in\mathbb{R}$. Khi đó $\displaystyle\int^0_{-1}f(x)\mathrm{d}x$ bằng
Câu 39: (MH Toan 2020) Cho hàm số \(f(x) = \frac{{mx – 4}}{{x – m}}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho đồng biến trên khoảng \((0; + \infty )\)?
Câu 39: (MH Toan 2020) Cho hàm số \(f(x) = \frac{{mx - 4}}{{x - m}}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho đồng biến trên khoảng \((0; + \infty )\)? A. \(5\). B. \(4\). C. \(3\). D. \(2\). Lời giải Đáp án: D Ta có \(f\prime (x) = \frac{{ - {m^2} + 4}}{{{{(x - m)}^2}}}\) Để hàm số đồng biến trên khoảng \((0; + \infty )\) thì … [Đọc thêm...] vềCâu 39: (MH Toan 2020) Cho hàm số \(f(x) = \frac{{mx – 4}}{{x – m}}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho đồng biến trên khoảng \((0; + \infty )\)?
Đề: Cho hàm số \(y = \frac{{2{x^2} – 3x + m}}{{x – 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} – 3x + 2}}{{x – 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\)
Đề bài: Cho hàm số \(y = \frac{{2{x^2} - 3x + m}}{{x - 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} - 3x + 2}}{{x - 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\) Lời giải $1$. Bạn … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{{2{x^2} – 3x + m}}{{x – 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} – 3x + 2}}{{x – 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\)
Đề: Cho hàm số \(y = \frac{{2{x^2} – 3x + m}}{{x – 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} – 3x + 2}}{{x – 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\)
Đề bài: Cho hàm số \(y = \frac{{2{x^2} - 3x + m}}{{x - 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} - 3x + 2}}{{x - 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\) Lời giải $1$. Bạn … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{{2{x^2} – 3x + m}}{{x – 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} – 3x + 2}}{{x – 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\)
Xét hàm số $ y=f\left( x \right)$ liên tục trên đoạn $\left[ -1;2 \right]$ và thỏa $ f\left( x \right)=\sqrt{2+x}+x.f\left( 3-x^2 \right)$. Tính $I=\displaystyle\int_{-1}^2{f\left( x \right)\textrm{ d}x}$.
Đề bài: Xét hàm số $ y=f\left( x \right)$ liên tục trên đoạn $\left[ -1;2 \right]$ và thỏa $ f\left( x \right)=\sqrt{2+x}+x.f\left( 3-x^2 \right)$. Tính $I=\displaystyle\int_{-1}^2{f\left( x \right)\textrm{ d}x}$. A. $I=\dfrac{4}{3}.$ B. $I=2.$ C. $I=\dfrac{28}{3}.$ D. $I=\dfrac{14}{3}.$ Lời Giải: Xét tích phân $J=\displaystyle\int_{-1}^2{tf\left( … [Đọc thêm...] vềXét hàm số $ y=f\left( x \right)$ liên tục trên đoạn $\left[ -1;2 \right]$ và thỏa $ f\left( x \right)=\sqrt{2+x}+x.f\left( 3-x^2 \right)$. Tính $I=\displaystyle\int_{-1}^2{f\left( x \right)\textrm{ d}x}$.
Xét hàm số $ y=f\left( x \right)$ liên tục trên đoạn $\left[ 0;2 \right]$ và thỏa $ f\left( x \right)+7f\left( 2-x \right)=2x$. Tính $I=\displaystyle\int_0^2{f\left( x \right)\textrm{ d}x}$.
Đề bài: Xét hàm số $ y=f\left( x \right)$ liên tục trên đoạn $\left[ 0;2 \right]$ và thỏa $ f\left( x \right)+7f\left( 2-x \right)=2x$. Tính $I=\displaystyle\int_0^2{f\left( x \right)\textrm{ d}x}$. A. $I=-4.$ B. $I=2.$ C. $I=\dfrac{1}{2}.$ D. $I=\dfrac{4}{3}.$ Lời Giải: Xét tích phân $I=\displaystyle\int_0^2{f\left( x \right)\textrm{ d}x}$. Đặt $ x=2-t$ … [Đọc thêm...] vềXét hàm số $ y=f\left( x \right)$ liên tục trên đoạn $\left[ 0;2 \right]$ và thỏa $ f\left( x \right)+7f\left( 2-x \right)=2x$. Tính $I=\displaystyle\int_0^2{f\left( x \right)\textrm{ d}x}$.
Cho hàm số $ y=f\left( x \right)$ liên tục và có đạo hàm trên $\mathbb{R}$ và thỏa điều kiên $ f\left( x^3+3x+1 \right)=3x+2,\forall x\in \mathbb{R}.$ Tính tích phân $I=\displaystyle\int_1^5{x.f’\left( x \right)\textrm{ d}x}$
Đề bài: Cho hàm số $ y=f\left( x \right)$ liên tục và có đạo hàm trên $\mathbb{R}$ và thỏa điều kiên $ f\left( x^3+3x+1 \right)=3x+2,\forall x\in \mathbb{R}.$ Tính tích phân $I=\displaystyle\int_1^5{x.f'\left( x \right)\textrm{ d}x}$ A. $I=\dfrac{5}{4}.$ B. $I=\dfrac{17}{4}.$ C. $I=\dfrac{27}{4}.$ D. $I=\dfrac{33}{4}.$ Lời Giải: Xét … [Đọc thêm...] vềCho hàm số $ y=f\left( x \right)$ liên tục và có đạo hàm trên $\mathbb{R}$ và thỏa điều kiên $ f\left( x^3+3x+1 \right)=3x+2,\forall x\in \mathbb{R}.$ Tính tích phân $I=\displaystyle\int_1^5{x.f’\left( x \right)\textrm{ d}x}$
Xét hàm số $ y=f\left( x \right)$ lên tục trên đoạn $\left[ 0;1 \right]$ và thỏa điều kiện $2f\left( x \right)+3f\left( 1-x \right)=x\sqrt{1-x}.$ Tính tích phân $I=\displaystyle\int_0^1{f\left( x \right)\textrm{ d}x}$
Đề bài: Xét hàm số $ y=f\left( x \right)$ lên tục trên đoạn $\left[ 0;1 \right]$ và thỏa điều kiện $2f\left( x \right)+3f\left( 1-x \right)=x\sqrt{1-x}.$ Tính tích phân $I=\displaystyle\int_0^1{f\left( x \right)\textrm{ d}x}$ A. $I=\dfrac{-4}{15}.$ B. $I=\dfrac{1}{15}.$ C. $I=\dfrac{4}{75}.$ D. $I=\dfrac{1}{25}.$ Lời Giải: Xét … [Đọc thêm...] vềXét hàm số $ y=f\left( x \right)$ lên tục trên đoạn $\left[ 0;1 \right]$ và thỏa điều kiện $2f\left( x \right)+3f\left( 1-x \right)=x\sqrt{1-x}.$ Tính tích phân $I=\displaystyle\int_0^1{f\left( x \right)\textrm{ d}x}$