• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bài tập Hàm số

Chứng minh rằng hàm số \(y = {x^4} – 6{x^2} + 4x + 6\) luôn luôn có 3 cực trị đồng thời gốc toạ độ O là trọng tâm của tam giác tạo bởi 3 đỉnh là 3 điểm cực trị của đồ thị hàm số.

Ngày 09/10/2021 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số, Bài tập Hàm số Tag với:Bai Toan hay 2022, Cực trị của hàm số, Cuc tri VDC

Xét hàm số \(y = {x^4} - 6{x^2} + 4x + 6\). Tập xác định: \(D = \mathbb{R}\). Ta có \(y' = 4{x^3} - 12x + 4\)\( = 4\left( {{x^3} - 3x + 1} \right)\) ; \(y' = 0\)\( \Leftrightarrow {x^3} - 3x + 1 = 0\). Xét hàm số \(g\left( x \right) = {x^3} - 3x + 1\). Tập xác định: \(D = \mathbb{R}\). \(g'\left( x \right) = 3{x^2} - 3\), \(g'\left( x \right) = 0 … [Đọc thêm...] vềChứng minh rằng hàm số \(y = {x^4} – 6{x^2} + 4x + 6\) luôn luôn có 3 cực trị đồng thời gốc toạ độ O là trọng tâm của tam giác tạo bởi 3 đỉnh là 3 điểm cực trị của đồ thị hàm số.

Bài tập tự luận về hàm số

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Bai tap tu luan

Admin Booktoan.com sưu tầm 600 bài tập tự luận về hàm số, được chia các chủ đề sau: Cực trị của hàm số   Giá trị lớn nhất – nhỏ nhất   Hàm số bậc hai Hàm số bậc nhất Hàm số liên tục   Khoảng cách trong hàm số Khảo sát và vẽ đồ thị hàm số   Tiếp tuyến của đồ thị Tâm đối xứng – trục đối xứng Tính chất của hàm … [Đọc thêm...] vềBài tập tự luận về hàm số

Đề: Cho phương trình:   $2\cos x\cos2x\cos3x+m=7\cos2x$a)    Giải phương trình với $m =  – 7$b)    xác định $m$ để phương trình có nhiều hơn một nghiệm x thuộc đoạn $[ { – \frac{{3\pi }}{8}; – \frac{\pi }{8}} ]$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho phương trình:   $2\cos x\cos2x\cos3x+m=7\cos2x$a)    Giải phương trình với $m =  - 7$b)    xác định $m$ để phương trình có nhiều hơn một nghiệm x thuộc đoạn $[ { - \frac{{3\pi }}{8}; - \frac{\pi }{8}} ]$ Lời giải Ta có:   $2\cos {\rm{x}}c{\rm{os}}3{\rm{x}} = c{\rm{os4x}} + c{\rm{os}}2{\rm{x}} = 2c{\rm{o}}{{\rm{s}}^2}2{\rm{x}} - 1 + c{\rm{os2x}}$ Do đó phương … [Đọc thêm...] vềĐề: Cho phương trình:   $2\cos x\cos2x\cos3x+m=7\cos2x$a)    Giải phương trình với $m =  – 7$b)    xác định $m$ để phương trình có nhiều hơn một nghiệm x thuộc đoạn $[ { – \frac{{3\pi }}{8}; – \frac{\pi }{8}} ]$

Đề: Cho hàm số      $y=\frac{(m+1)x+m}{x+m} $a)    Với $m = 1$:i) Khảo sát sự biến thiên và vẽ đồ thị hàm số.ii) Tìm trên đồ thị những điểm có tổng khoảng cách đến hai tiệm cận là nhỏ nhất.b) Chứng minh rằng với mọi $m \ne 0$, đồ thị của hàm số luôn tiếp xúc một đường thẳng cố định

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số      $y=\frac{(m+1)x+m}{x+m} $a)    Với $m = 1$:i) Khảo sát sự biến thiên và vẽ đồ thị hàm số.ii) Tìm trên đồ thị những điểm có tổng khoảng cách đến hai tiệm cận là nhỏ nhất.b) Chứng minh rằng với mọi $m \ne 0$, đồ thị của hàm số luôn tiếp xúc một đường thẳng cố định Lời giải a)    Với $m = 1$:$y = \frac{{2x + 1}}{{x + 1}} = 2 - \frac{1}{{x + 1}}$i) Dành … [Đọc thêm...] vềĐề: Cho hàm số      $y=\frac{(m+1)x+m}{x+m} $a)    Với $m = 1$:i) Khảo sát sự biến thiên và vẽ đồ thị hàm số.ii) Tìm trên đồ thị những điểm có tổng khoảng cách đến hai tiệm cận là nhỏ nhất.b) Chứng minh rằng với mọi $m \ne 0$, đồ thị của hàm số luôn tiếp xúc một đường thẳng cố định

Đề: Cho hàm số  $y = \frac{2x – 3}{x – 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất.

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khoảng cách trong hàm số

Đề bài: Cho hàm số  $y = \frac{2x - 3}{x - 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất. Lời giải Ta có:  $ M\left( {{x_0};\frac{{2{x_0} - 3}}{{{x_0} - 2}}} … [Đọc thêm...] vềĐề: Cho hàm số  $y = \frac{2x – 3}{x – 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất.

Đề: Cho hàm số $y=\frac{2x+1}{x+1} $ có đồ thị $(C)$.  Tìm $k$ để đường thẳng $y=kx+2k+1$ cắt đồ thị $(C)$ tại hai điểm phân biệt $A, B$ sao cho khoảng cách từ $A, B$ đến trục hoành bằng nhau

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tương giao của 2 đồ thị

Đề bài: Cho hàm số $y=\frac{2x+1}{x+1} $ có đồ thị $(C)$.  Tìm $k$ để đường thẳng $y=kx+2k+1$ cắt đồ thị $(C)$ tại hai điểm phân biệt $A, B$ sao cho khoảng cách từ $A, B$ đến trục hoành bằng nhau Lời giải Phương trình hoành độ giao điểm của đường thẳng và $(C)$: $\frac{2x+1}{x+1}=kx+2k+1 $$\Leftrightarrow  kx^2+(3k-1)x+2k=0   (x=-1$ không phải là nghiệm)Đường thẳng … [Đọc thêm...] vềĐề: Cho hàm số $y=\frac{2x+1}{x+1} $ có đồ thị $(C)$.  Tìm $k$ để đường thẳng $y=kx+2k+1$ cắt đồ thị $(C)$ tại hai điểm phân biệt $A, B$ sao cho khoảng cách từ $A, B$ đến trục hoành bằng nhau

Đề:   Cho 3 số dương $a,b,c$ thỏa $abc=1$. Tìm giá trị nhỏ nhất của:        $P=\frac{bc}{a^2b+a^2c}+\frac{ac}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài:   Cho 3 số dương $a,b,c$ thỏa $abc=1$. Tìm giá trị nhỏ nhất của:        $P=\frac{bc}{a^2b+a^2c}+\frac{ac}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}$ Lời giải GiảiĐặt: $x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}$, ta có: $xyz=1$ và $P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}$Áp dụng bất đẳng thức Cô-si ta chứng minh: $P \geq \frac{1}{2}(x+y+z)\geq \frac{3}{2}$Thật vậy … [Đọc thêm...] vềĐề:   Cho 3 số dương $a,b,c$ thỏa $abc=1$. Tìm giá trị nhỏ nhất của:        $P=\frac{bc}{a^2b+a^2c}+\frac{ac}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}$

Đề: Cho hàm số \(y=2x^{2}-3x+1\). Tính số gia của hàm số tại điểm \(x_{0}=2\) với số gia của đối số cho tương ứng.a) \(\Delta x=0,1\)b) \(\Delta x=0,2\).

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Đạo hàm

Đề bài: Cho hàm số \(y=2x^{2}-3x+1\). Tính số gia của hàm số tại điểm \(x_{0}=2\) với số gia của đối số cho tương ứng.a) \(\Delta x=0,1\)b) \(\Delta x=0,2\). Lời giải a) Số gia của hàm số tại \(x_{0}=2\) ứng với số gia \(\Delta x=0,1\) là:\(\Delta f=f(2+0,1)-f(2)=[2(2,1)^{2}-3(2,1)+1]-[2.2^{2}-3.2+1]=3,52\).b) Số gia tại \(x_{0}=2\) ứng với \(\Delta x=0,2\) là:\(\Delta … [Đọc thêm...] vềĐề: Cho hàm số \(y=2x^{2}-3x+1\). Tính số gia của hàm số tại điểm \(x_{0}=2\) với số gia của đối số cho tương ứng.a) \(\Delta x=0,1\)b) \(\Delta x=0,2\).

Đề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:        $y=\sqrt{x-2}+\sqrt{4-x}$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:        $y=\sqrt{x-2}+\sqrt{4-x}$ Lời giải Điều kiện $2\leq x\leq 4$Sử dụng bất đẳng thức bunhiacôpski ta co:   $y=\sqrt{x-2}+\sqrt{4-x}\leq \sqrt{(1+1)(x-2+4-x)}=2$Suy ra $\max  y=2$, đạt được khi  :   $\sqrt{x-2}=\sqrt{4-x}\Leftrightarrow x=3$.Mặt khác:   $y=\sqrt{x-2}+\sqrt{4-x}\Rightarrow … [Đọc thêm...] vềĐề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:        $y=\sqrt{x-2}+\sqrt{4-x}$

Đề: Cho hàm số:  $y = 4{x^3} – 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} – {x_M}}}{{{x_N} – {x_A}}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}}$(${x_M},{x_N}$ là hoành độ của các điểm $M, N$). Tìm quỹ tích  của điểm $P$ khi $m$ biến thiên

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tương giao của 2 đồ thị

Đề bài: Cho hàm số:  $y = 4{x^3} - 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} - {x_M}}}{{{x_N} - {x_A}}} = \frac{{{x_P} - {x_M}}}{{{x_P} - … [Đọc thêm...] vềĐề: Cho hàm số:  $y = 4{x^3} – 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} – {x_M}}}{{{x_N} – {x_A}}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}}$(${x_M},{x_N}$ là hoành độ của các điểm $M, N$). Tìm quỹ tích  của điểm $P$ khi $m$ biến thiên

  • Trang 1
  • Trang 2
  • Trang 3
  • Interim pages omitted …
  • Trang 61
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.