• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề: Cho hàm số:  $y = 4{x^3} – 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} – {x_M}}}{{{x_N} – {x_A}}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}}$(${x_M},{x_N}$ là hoành độ của các điểm $M, N$). Tìm quỹ tích  của điểm $P$ khi $m$ biến thiên

Đăng ngày: 15/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Tương giao của 2 đồ thị

adsense

ham so
Đề bài: Cho hàm số:  $y = 4{x^3} – 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} – {x_M}}}{{{x_N} – {x_A}}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}}$(${x_M},{x_N}$ là hoành độ của các điểm $M, N$). Tìm quỹ tích  của điểm $P$ khi $m$ biến thiên

Lời giải

$1)$ Theo giả thiết ${x_A} = 1$ nên ${y_A} = {4.1^3} – 3.1 + 1 = 2$, do đó phương trình đường thẳng $d$ là
    $y – 2 = m(x – 1){\rm{ }} \Leftrightarrow {\rm{y}} = mx – m + 2$
Hoành độ ${x_A},{x_M},{x_N}$ của $A, M, N$ là nghiệm của phương trình:
    $4{x^3} – 3x + 1 = mx – m + 2$
$ \Leftrightarrow 4{x^3} – (3 + m)x + m – 1 = 0 \Leftrightarrow (x – 1)(4{x^2} + 4x + 1 – m) = 0$
$ \Leftrightarrow (x – 1)\left[ {{{(2x + 1)}^2} – m} \right] = 0$
Do ${x_A} = 1$ nên ${x_M},{x_N}$ là nghiệm của phương trình:
        ${(2x + 1)^2} – m = 0$                $(1)$
Để $M \ne N$ và $ \ne A$ ta cần có:
        $\left\{ \begin{array}{l}
m > 0\\
{(2.1 + 1)^2} – m \ne 0
\end{array} \right.{\rm{    }} \Leftrightarrow {\rm{9}} \ne m > 0$

adsense

$2)$ ${x_A} = 1$ nên đẳng thức đã cho trở thành:
    $\frac{{1 – {x_M}}}{{{x_N} – 1}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}} \Rightarrow (1 – {x_M})({x_P} – {x_N}) = ({x_N} – 1)({x_P} – {x_M})$
$ \Leftrightarrow \left[ {2 – ({x_M} + {x_N})} \right]{x_P} = ({x_M} + {x_N}) – 2{x_M}{x_N}$
$ \Rightarrow {x_P} = \frac{{\left( {{x_M} + {x_N}} \right) – 2{x_M}{x_N}}}{{2 – ({x_M} + {x_N})}}$
Do ${x_M},{x_N}$ là nghiệm của $(1)$, theo định lý Viet ta có:
${x_M} + {x_N} = – 1$, ${x_M}{x_N} = (1 – m)/4$.
Từ đó ta được:
    ${x_P} = \left[ { – 1 – 2.\left( {\frac{{1 – m}}{2}} \right)} \right]/(2 + 1) = \frac{{m – 3}}{6}$            $(2)$
Và    ${y_P} = m{x_P} – m + 2$                        $(3)$

Khử $m$ khỏi $(2)$ và $(3)$ ta được ${y_P} = 6x_P^2 – 3{x_P} – 1$.
Lại do $m \ne 9$ nên ${x_P} \ne (9 – 3)/6 = 1$; $m > 0$ nên ${x_P} = – 1/2 + m/6 > – 1/2$

Vậy quỹ tích của $P$ là nhánh parabol $y = 6{x^2} – 3x – 1,{\rm{ x}} > – 1/2$ bỏ điểm có hoành độ $1$

Thuộc chủ đề:Bài tập Hàm số Tag với:Tương giao của 2 đồ thị

Bài liên quan:

  1. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ, phương trình \(f\left( {{{\log }_2}f\left( x \right)} \right) = 3\) có nghiệm?
  2. CÔ LẬP ĐƯỜNG THẲNG TRONG BIỆN LUẬN ĐỒ THỊ HÀM SỐ CÓ CHỨA THAM SỐ
  3. [VDC] Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm?
  4. Đề: Cho hàm số $y=\frac{2x+1}{x+1} $ có đồ thị $(C)$.  Tìm $k$ để đường thẳng $y=kx+2k+1$ cắt đồ thị $(C)$ tại hai điểm phân biệt $A, B$ sao cho khoảng cách từ $A, B$ đến trục hoành bằng nhau
  5. Đề: Cho hàm số:  $y = {x^2}(m – x) – m$                    (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$
  6. Đề: Cho hàm số:  $y = \frac{{{x^2} – (2m + 1)x + {m^2} – m}}{{x + {m^2} + 4m + 5}}$trong đó $m$ là tham số1) Tìm quỹ tích giao điểm của đồ thị với trục $Ox$, khi $m$ thay đổi.2) Tìm quỹ tích giao điểm của đồ thị với trục $Oy$, khi $m$ thay đổi
  7. Đề: Cho parabol:  $y = {x^2}+(2m + 1)x + {m^2} – 1$.   Trong đó $m$ là tham số.a) Tìm quỹ tích đỉnh của parabol khi $m$ biến thiênb) Chứng minh rằng khoảng cách giữa các giao điểm của đường thẳng $y = x$ với parabol không phụ thuộc vào $m$.c) Chứng minh rằng với mọi giá trị của $m$, parabol luôn tiếp xúc với một đường thẳng cố định
  8. Đề: Cho hàm số: $y = x^3 – \frac{3}{2}mx^2 + \frac{1}{2}{m^3}$ với $m$ là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m = 1.$$2$. Xác định $m$ để đồ thị hàm số có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng $y = x.$$3$. Xác định $m$ để đường thẳng $y = x$ cắt đồ thị hàm số tại ba điểm phân biệt $A, B, C$ sao cho $AB = BC.$
  9. Đề: Cho các đường: $y =  – \frac{{{x^3}}}{3} + 3x$        $(P)$  và  $y = m(x – 3)$        $(T)$1) Với giá trị nào của $m$ thì $(T)$ là tiếp tuyến của $(P)$?2) Chứng tỏ họ $(T)$ đi qua một điểm cố định $A$ thuộc $(P)$.3) Gọi $A, B, C$ là các giao điểm của $(P)$ và $(T)$. Hãy tìm m để $OB \bot OC$ ($O$ là gốc tọa độ)
  10. Đề:  Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.
  11. Đề: Tính đạo hàm các hàm số sau đây:a) $y=\sin 3x-\cos3x$ b) $y=\frac {x}{\sin x}$ c) $y=\sin ^32x$ d) $y= \cos \frac{1}{x}$
  12. Đề:   Cho hai đường thẳng \(d_1\) và \(d_2\) có phương trình:      \(d_1: (a+b)x+y=1\)                          \(d_2: (a^2-b^2)x+ay=b\).a) Tìm giao điểm của \(d_1\) và \(d_2\) biện luận theo \(a,b\)b) Tìm điều kiện của \(a\) và \(b\) để \(d_1\) và \(d_2\) và trục hoành cắt nhau tại 1 điểm.
  13. Đề: Cho hàm số:  $y = \frac{{{x^2} – x + 1}}{{x – 1}}$1)    Khảo sát sự biến thiên và vẽ đồ thị $(C)$ của hàm số.2)    Tìm trên trục $Oy$ các điểm từ đó có thể kẻ được ít nhất một tiếp tuyến đến đồ thị $(C)$.3)    Xác định $a$ để đồ thị $(C)$ tiếp xúc với parabol $y = {x^2} + a$
  14. Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
  15. Đề: Cho hàm số:  $y = \frac{{ – {x^2} + x + a}}{{x + a}}$,  trong  đó $a$ là tham số.1)    Xác định $a$ để đồ thị hàm số có tiện cận xiên đi qua điểm $(0; 2)$.Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với giá trị vừa tìm được của $a$.2)    Xác định tất cả các giá rị của $a$ để đồ thị hàm số cắt đường thẳng $y = x – 1$ tại 2 điểm phân biệt. Khi đó gọi ${y_1},{y_2}$ là tung độ của 2 giao điểm, hãy tìm một hệ thức giữa ${y_1},{y_2}$ không phụ thuộc vào $a$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.