• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

[VDC] Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm?

Đăng ngày: 20/07/2020 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:Tương giao của 2 đồ thị, VDC Toán 2021

adsense

Câu 42. TRƯỜNG THPT PHAN BỘI CHÂU-KHÁNH HOÀ
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau:
Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm?
===========
[VDC] Cho hàm số $y=f(x)$ liên tục trên $mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $fleft(2^{3 x^{4}-4 x^{3}+2}right)+1=0$ có bao nhiêu nghiệm? 1

Lời giải
[VDC] Cho hàm số $y=f(x)$ liên tục trên $mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $fleft(2^{3 x^{4}-4 x^{3}+2}right)+1=0$ có bao nhiêu nghiệm? 2

adsense

== (Thầy Toàn Hoàng)
[VDC] Cho hàm số $y=f(x)$ liên tục trên $mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $fleft(2^{3 x^{4}-4 x^{3}+2}right)+1=0$ có bao nhiêu nghiệm? 3
== (Cô Lưu Thêm) ====

Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:Tương giao của 2 đồ thị, VDC Toán 2021

Bài liên quan:

  1. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ, phương trình \(f\left( {{{\log }_2}f\left( x \right)} \right) = 3\) có nghiệm?
  2. Tập san số 1 – Tháng 7/2021 – Giải VD – VDC – NHÓM GIÁO VIÊN TOÁN VIỆT NAM
  3. 10 CHUYÊN ĐỀ VẬN DỤNG-VẬN DỤNG CAO VTV7
  4. 290 câu trắc nghiệm VDC Hàm số
  5. CÔ LẬP ĐƯỜNG THẲNG TRONG BIỆN LUẬN ĐỒ THỊ HÀM SỐ CÓ CHỨA THAM SỐ
  6. [VDC – LOG MAX MIN 2020] Cho hàm số $ f\left(x\right)=\log_2^3x-\log_2{x^3}+m$ ($ m$là tham số thực). Gọi $ S$ là tập hợp tất cả các giá trị của $ m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $ S$ bằng
  7. [VDC – Xác suất 2020] Gọi S là tập hợp các số tự nhiên có 9 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được có đúng bốn chữ số lẻ sao cho chữ số 0 luôn đứng giữa hai chữ số lẻ bằng
  8. [VDC LOG 2020] Cho các số thực dương a, b thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}\left( {4a – 5b} \right) – 1\). Đặt \(T = \frac{b}{a}\). Khẳng định nào sau đây đúng?
  9. [VDC Câu 50 L2 – 2020] Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({\log _3}\left( {x + y} \right) = {\log _4}\left( {{x^2} + {y^2}} \right)\)?
  10. [VDC Mũ – Logarit] Xét các số dương \(a,b,x,y\) thỏa mãn \(a > 1,b > 1\) và \({a^x} = {b^y} = \sqrt {ab} \). Giá trị nhỏ nhất của biểu thức \(P = x + 2y\) thuộc tập nào dưới đây?
  11. [VDC] Gọi $S$ là tập hợp tất cả các giá trị nguyên của $m$ sao cho hàm số $y=\left|-x^{4}+m x^{3}+2 m^{2} x^{2}+m-1\right|$ đồng biếnn trên $(1 ;+\infty)$
  12. Đề: Cho hàm số $y=\frac{2x+1}{x+1} $ có đồ thị $(C)$.  Tìm $k$ để đường thẳng $y=kx+2k+1$ cắt đồ thị $(C)$ tại hai điểm phân biệt $A, B$ sao cho khoảng cách từ $A, B$ đến trục hoành bằng nhau
  13. Đề: Cho hàm số:  $y = 4{x^3} – 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} – {x_M}}}{{{x_N} – {x_A}}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}}$(${x_M},{x_N}$ là hoành độ của các điểm $M, N$). Tìm quỹ tích  của điểm $P$ khi $m$ biến thiên
  14. Đề: Cho hàm số:  $y = {x^2}(m – x) – m$                    (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$
  15. Đề: Cho hàm số:  $y = \frac{{{x^2} – (2m + 1)x + {m^2} – m}}{{x + {m^2} + 4m + 5}}$trong đó $m$ là tham số1) Tìm quỹ tích giao điểm của đồ thị với trục $Ox$, khi $m$ thay đổi.2) Tìm quỹ tích giao điểm của đồ thị với trục $Oy$, khi $m$ thay đổi

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.