• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$

Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$

Đăng ngày: 02/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$

Lời giải

$1)$    Dành cho bạn đọc.

$2)$    Kí hiệu ${x_M} = a$ là hoành độ của $M$. Khi đó $M$ có tung độ
${y_M} = \frac{a}{2} – 1 + \frac{1}{{a – 1}}$
và tại $M$ tiếp tuyến có hệ số góc $y’\left( a \right) = 1/2 – 1/{\left( {a – 1} \right)^2}$.
Từ đó ta có phương trình tiếp tuyến tại $M$:  $y = \left[ {\frac{1}{2} – \frac{1}{{{{\left( {a – 1} \right)}^2}}}} \right]\left( {x – a} \right) + \left( {\frac{a}{2} – 1 + \frac{1}{{a – 1}}} \right)$
Tiếp tuyến này cắt tiệm cận đứng tại $A$ với tọa độ ${x_A} = 1$.
${y_A} = \left[ {\frac{1}{2} – \frac{1}{{{{\left( {a – 1} \right)}^2}}}} \right]\left( {1 – a} \right) + \left( {\frac{a}{2} – 1 + \frac{1}{{a – 1}}} \right) =  – \frac{1}{2} + \frac{2}{{a – 1}}$
và cắt tiệm cận xiên tại với tọa độ
${y_B} = \left[ {\frac{1}{2} – \frac{1}{{{{\left( {a – 1} \right)}^2}}}} \right]\left( {{x_B} – a} \right) + \left( {\frac{a}{2} – 1 + \frac{1}{{a – 1}}} \right) = \frac{B}{2} – 1$
$ \Rightarrow \frac{{{x_B} – a}}{{{{\left( {a – 1} \right)}^2}}} = \frac{1}{{a – 1}} \Rightarrow {x_B} = 2a – 1$ , do đó ${y_B} = a – 3/2$.
Ta có $\frac{1}{2}\left( {{x_A} + {x_B}} \right) = \frac{1}{2}\left( {1 + 2a – 1} \right) = a = {x_M},$
$\frac{1}{2}\left( {{y_A} + {y_B}} \right) = \frac{1}{2}\left[ { – \frac{1}{2} + \frac{2}{{a – 1}} + a – \frac{3}{2}} \right] = \frac{a}{2} – 1 + \frac{1}{{a – 1}} = {y_M},$  chứng tỏ $M$ là trung điểm của $AB$.
Giao điểm $I$ của các tiệm cận có tọa độ ${x_1} = 1,{y_1} = \left( {1/2} \right) – 1 =  – 1/2$. Vậy $\Delta IAB$ có diện tích
$S = \frac{1}{2}\left| {{y_A} – {y_1}} \right|.\left| {{x_A} + {x_1}} \right| = \frac{1}{2}.\frac{2}{{a – 1}}.\left| {2a – 2} \right| = 2$

$3)$    Gọi ${x_1},{x_2}$ là hoành độ hai điểm $M, N$ của đồ thị đối xứng với nhau qua đường thẳng $y = x$. Thế thì ${x_2},{x_1}$ là tung độ của hai điểm $M, N$.
Đường thẳng $MN$ vuông góc với đường thẳng $y = x$ nên có hệ số góc $-1$, vậy có phương trình $y = – x + k$. Ta có ${x_2} = – {x_1} + k \Rightarrow k = {x_1} + {x_2}$. $M, N$ thuộc đồ thị nên ${x_1},{x_2}$ là nghiệm của phương trình
$\frac{{{x^2} – 3x + 4}}{{2x – 2}} = – x + k \Leftrightarrow 3{x^2} – \left( {5 + 2k} \right)x + 4 + 2k = 0$.        $(1)$
Theo định lí Viet ta có $k = {x_1} + {x_2} = \left( {5 + 2k} \right)/3 \Rightarrow k = 5$.
Với $k = 5\Rightarrow $ (1) trở thành $3{x^2} – 15x + 14 = 0$. Giải ra ta có  ${x_{1,2}} = \frac{{15 \pm \sqrt {57} }}{6}$

Tag với:Tương giao của 2 đồ thị

Bài liên quan:

  • CÔ LẬP ĐƯỜNG THẲNG TRONG BIỆN LUẬN ĐỒ THỊ HÀM SỐ CÓ CHỨA THAM SỐ
  • [VDC] Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm?
  • Đề: Cho hàm số $y=\frac{2x+1}{x+1} $ có đồ thị $(C)$.  Tìm $k$ để đường thẳng $y=kx+2k+1$ cắt đồ thị $(C)$ tại hai điểm phân biệt $A, B$ sao cho khoảng cách từ $A, B$ đến trục hoành bằng nhau
  • Đề: Cho hàm số:  $y = 4{x^3} – 3x + 1$1) Giả sử $A$ là một điểm trên đồ thị có hoành độ ${x_A} = 1$ và $(d)$ là đường thẳng đi qua $A$, có hệ số góc $m$. Hãy xác định $m$ để $(d)$ cắt đồ thị tại 2 điểm phân biệt $M, N$ khác với $A$.2) Giả sử $P$ là một điểm trên $d$, với hoành độ ${x_P}$ thỏa mãn:  $\frac{{{x_A} – {x_M}}}{{{x_N} – {x_A}}} = \frac{{{x_P} – {x_M}}}{{{x_P} – {x_N}}}$(${x_M},{x_N}$ là hoành độ của các điểm $M, N$). Tìm quỹ tích  của điểm $P$ khi $m$ biến thiên
  • Đề: Cho hàm số:  $y = {x^2}(m – x) – m$                    (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$
  • Đề: Cho hàm số:  $y = \frac{{{x^2} – (2m + 1)x + {m^2} – m}}{{x + {m^2} + 4m + 5}}$trong đó $m$ là tham số1) Tìm quỹ tích giao điểm của đồ thị với trục $Ox$, khi $m$ thay đổi.2) Tìm quỹ tích giao điểm của đồ thị với trục $Oy$, khi $m$ thay đổi
  • Đề: Cho parabol:  $y = {x^2}+(2m + 1)x + {m^2} – 1$.   Trong đó $m$ là tham số.a) Tìm quỹ tích đỉnh của parabol khi $m$ biến thiênb) Chứng minh rằng khoảng cách giữa các giao điểm của đường thẳng $y = x$ với parabol không phụ thuộc vào $m$.c) Chứng minh rằng với mọi giá trị của $m$, parabol luôn tiếp xúc với một đường thẳng cố định
  • Đề: Cho hàm số: $y = x^3 – \frac{3}{2}mx^2 + \frac{1}{2}{m^3}$ với $m$ là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m = 1.$$2$. Xác định $m$ để đồ thị hàm số có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng $y = x.$$3$. Xác định $m$ để đường thẳng $y = x$ cắt đồ thị hàm số tại ba điểm phân biệt $A, B, C$ sao cho $AB = BC.$
  • Đề: Cho các đường: $y =  – \frac{{{x^3}}}{3} + 3x$        $(P)$  và  $y = m(x – 3)$        $(T)$1) Với giá trị nào của $m$ thì $(T)$ là tiếp tuyến của $(P)$?2) Chứng tỏ họ $(T)$ đi qua một điểm cố định $A$ thuộc $(P)$.3) Gọi $A, B, C$ là các giao điểm của $(P)$ và $(T)$. Hãy tìm m để $OB \bot OC$ ($O$ là gốc tọa độ)
  • Đề:  Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.