• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Cực trị của hàm số / Cho hàm số $f(x)=a x^{3}+b x^{2}+c x+1,(a \neq 0)$ với các số thực $a, b, c$ thoả mãn $a+b+c>2019$ và $\lim _{x \rightarrow+\infty} f(x)=-\infty .$ Số điềm cực trị của hàm số $y=|g(x-2019)|$ với $g(x)=f(x)-2020$ là

Cho hàm số $f(x)=a x^{3}+b x^{2}+c x+1,(a \neq 0)$ với các số thực $a, b, c$ thoả mãn $a+b+c>2019$ và $\lim _{x \rightarrow+\infty} f(x)=-\infty .$ Số điềm cực trị của hàm số $y=|g(x-2019)|$ với $g(x)=f(x)-2020$ là

Ngày 17/01/2021 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Trắc nghiệm cực trị Vận dụng

Cho hàm số $f(x)=a x^{3}+b x^{2}+c x+1,(a neq 0)$ với các số thực $a, b, c$ thoả mãn $a+b+c>2019$ và $lim _{x rightarrow+infty} f(x)=-infty .$ Số điềm cực trị của hàm số $y=|g(x-2019)|$ với $g(x)=f(x)-2020$ là 1

Cho hàm số $f(x)=a x^{3}+b x^{2}+c x+1,(a \neq 0)$ với các số thực $a, b, c$ thoả mãn $a+b+c>2019$ và $\lim _{x \rightarrow+\infty} f(x)=-\infty .$ Số điềm cực trị của hàm số $y=|g(x-2019)|$ với $g(x)=f(x)-2020$ là
A. 4
B. 2
C. 5
D. 3
Lời giải
Chọn C
Ta có số điểm cực trị của hàm số $y=|g(x-2019)|$ bằng Số điểm cựa trị của hàm số
$$
y=|g(x)|
$$
Ta có $\lim _{x \rightarrow+\infty} f(x)=-\infty \Rightarrow a<0 \Rightarrow \lim _{x \rightarrow-\infty} f(x)=+\infty$.

Khi đó $\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}(f(x)-2020)=-\infty$ (1)

$ \begin{array}{l} g(1)=f(1)-2020=a+b+c+1-2020=a+b+c-2019>0(2) \\
g(0)=f(0)-2020=-2019<0(3) \end{array} $

Từ $(1),(2),(3),(4) \Rightarrow$ đồ thị hàm số $y=g(x)$ cắt $O x$ tai 3 điểm phân biệt $\Rightarrow$ hàm số $y=g(x)$ có hai điềm cực trị.

Vậy hàm số $y=|g(x)|$ có 5 điềm cực trị.

Bài liên quan:

  1. Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?
  2. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} + 3{x^2} – 4} \right)\) là

  3. Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'(x) = {(x + 1)^2}\left( {{x^2} – 4x} \right)\).Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g(x) = f\left( {2{x^2} – 12x + m} \right)\) có đúng 5 điểm cực trị?

  4. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2} + 4} \right)\) là

  5. Cho hàm số \(y = f\left( x \right)\) có đồ thị hàm số như hình bên. Hàm số \(g\left( x \right) = f\left( { – {x^2} + 3x} \right)\) có bao nhiêu điểm cực đại?

    88
  6. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm \(f’\left( x \right)\) như sau:

    Hỏi hàm số \(g\left( x \right) = f\left( {{x^2} – 2x} \right)\) có bao nhiêu điểm cực tiểu?

  7. Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị \(f’\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( x \right) – x\). Hàm số \(g\left( x \right)\) đạt cực đại tại điểm nào sau đây?

  8. Cho hàm số bậc bốn \(y = f\left( x \right)\)có đồ thị như hình dưới đây

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2}} \right)\) là

  9. Cho hàm số có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số là

    C:\Users\Administrator\Desktop\cau-50-de-thoai-ngoc-hau.png
  10. Cho hàm số\(\,y = f\left( x \right)\,\)có bảng biến thiên như hình vẽ bên. Hàm số\(\,y = f\left( {2x} \right)\,\)đạt cực đại tại

  11. Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

    Hàm số \(g\left( x \right) = 2{f^3}\left( x \right) – 6{f^2}\left( x \right) – 1\) có bao nhiêu điểm cực tiểu?

  12. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\) để

    hàm số \(g\left( x \right) = \left| {f\left( {x + 2018} \right) + {m^2}} \right|\) có \(5\) điểm cực trị?

  13. Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Hàm số \(y = f’\left( x \right)\) có đồ thị như hình vẽ.

    Số điểm cực trị của hàm số \(g\left( x \right) = f(x – 2018) – 2019x + 2020\) là

  14. Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 0 \right) < 0,\) đồng thời đồ thị hàm số \(y = f’\left( x \right)\) như hình vẽ bên dưới

    132

    Số điểm cực trị của hàm số \(g\left( x \right) = {f^2}\left( x \right)\) là

  15. Cho hàm số bậc ba\(y = f\left( x \right)\) có đồ thị như hình dưới đây. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^4} – 8{x^2} + 1} \right)\)là

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.