• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Cực trị của hàm số / Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?

Ngày 13/03/2023 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Trắc nghiệm cực trị Vận dụng

Có bao nhiêu giá trị nguyên của tham số (m) để hàm số (y = - {x^4} + 6{x^2} + mx) có ba điểm cực trị?
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y =  – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?

A. \(17\) .

 B. \(15\) .

 C. \(3\) .

 D. \(7\) .

Lời giải:

Chọn B

Ta có: \(y’ =  – 4{x^3} + 12x + m\) . Xét phương trình \(y’ = 0 \Leftrightarrow  – 4{x^3} + 12x + m = 0\,\,\,\,\,\,\left( 1 \right)\) .

Để hàm số có ba điểm cực trị thì phương trình \(\left( 1 \right)\) phải có 3 nghiệm phân biệt.

Ta có: \(\left( 1 \right) \Leftrightarrow m = 4{x^3} – 12x\) .

Xét hàm số \(g\left( x \right) = 4{x^3} – 12x\) có \(g’\left( x \right) = 12{x^2} – 12\) . Cho \(g’\left( x \right) = 0 \Leftrightarrow 12{x^2} – 12 = 0 \Leftrightarrow x =  \pm 1\) .

Bảng biến thiên của \(g\left( x \right)\)

Có bao nhiêu giá trị nguyên của tham số <strong>(m)</strong> để hàm số <strong>(y = - {x^4} + 6{x^2} + mx)</strong> có ba điểm cực trị? 1\(m\) để hàm số \(y = – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?” title=”Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?” />

Dựa vào bảng biến thiên ta thấy, phương trình \(\left( 1 \right)\) có 3 nghiệm phân biệt khi \( – 8 < m < 8\) .

Do \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { – 7, – 6, – 5,…,5,6,7} \right\}\) .

Vậy có 15 giá trị nguyên của tham số \(m\) thỏa yêu cầu đề bài.

Bài liên quan:

  1. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} + 3{x^2} – 4} \right)\) là

  2. Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'(x) = {(x + 1)^2}\left( {{x^2} – 4x} \right)\).Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g(x) = f\left( {2{x^2} – 12x + m} \right)\) có đúng 5 điểm cực trị?

  3. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2} + 4} \right)\) là

  4. Cho hàm số \(y = f\left( x \right)\) có đồ thị hàm số như hình bên. Hàm số \(g\left( x \right) = f\left( { – {x^2} + 3x} \right)\) có bao nhiêu điểm cực đại?

    88
  5. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm \(f’\left( x \right)\) như sau:

    Hỏi hàm số \(g\left( x \right) = f\left( {{x^2} – 2x} \right)\) có bao nhiêu điểm cực tiểu?

  6. Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị \(f’\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( x \right) – x\). Hàm số \(g\left( x \right)\) đạt cực đại tại điểm nào sau đây?

  7. Cho hàm số bậc bốn \(y = f\left( x \right)\)có đồ thị như hình dưới đây

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2}} \right)\) là

  8. Cho hàm số có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số là

    C:\Users\Administrator\Desktop\cau-50-de-thoai-ngoc-hau.png
  9. Cho hàm số\(\,y = f\left( x \right)\,\)có bảng biến thiên như hình vẽ bên. Hàm số\(\,y = f\left( {2x} \right)\,\)đạt cực đại tại

  10. Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

    Hàm số \(g\left( x \right) = 2{f^3}\left( x \right) – 6{f^2}\left( x \right) – 1\) có bao nhiêu điểm cực tiểu?

  11. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\) để

    hàm số \(g\left( x \right) = \left| {f\left( {x + 2018} \right) + {m^2}} \right|\) có \(5\) điểm cực trị?

  12. Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Hàm số \(y = f’\left( x \right)\) có đồ thị như hình vẽ.

    Số điểm cực trị của hàm số \(g\left( x \right) = f(x – 2018) – 2019x + 2020\) là

  13. Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 0 \right) < 0,\) đồng thời đồ thị hàm số \(y = f’\left( x \right)\) như hình vẽ bên dưới

    132

    Số điểm cực trị của hàm số \(g\left( x \right) = {f^2}\left( x \right)\) là

  14. Cho hàm số bậc ba\(y = f\left( x \right)\) có đồ thị như hình dưới đây. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^4} – 8{x^2} + 1} \right)\)là

  15. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( { – 2019;2019} \right)\) để hàm số

    \(y = {\sin ^3}x – 3{\cos ^2}x – m\sin x – 1\) đồng biến trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\).

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.