• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

VDC Toan 2023

Cho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.

Ngày 28/05/2023 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:tich phan nang cao, VDC Toan 2023

Cho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.A. $2 \ln 2$.B. $\ln 5$.C. $3 \ln 2$.D. $2 \ln 3$. … [Đọc thêm...] vềCho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.

Cho khối nón đỉnh $S$ có đường cao bằng 2a. Mặt phẳng $(P)$ đi qua đỉnh $S$ nhưng không chứa trục của hình nón cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $A B=4 a$. Biết mặt phẳng $(P)$ tạo với đáy nón một góc $60^{\circ}$, thể tính của khối nón đã cho bằng

Ngày 27/05/2023 Thuộc chủ đề:Trắc nghiệm Mặt Nón Tag với:Trac nghiem mat non van dung, VDC Toan 2023

Cho khối nón đỉnh $S$ có đường cao bằng 2a. Mặt phẳng $(P)$ đi qua đỉnh $S$ nhưng không chứa trục của hình nón cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $A B=4 a$. Biết mặt phẳng $(P)$ tạo với đáy nón một góc $60^{\circ}$, thể tính của khối nón đã cho bằngA. $\frac{32 \pi a^{3}}{9}$.B. $32 \pi a^{3}$.C. $\frac{32 \pi a^{3}}{3}$.D. $\frac{64 \pi a^{3}}{9}$. Lời … [Đọc thêm...] vềCho khối nón đỉnh $S$ có đường cao bằng 2a. Mặt phẳng $(P)$ đi qua đỉnh $S$ nhưng không chứa trục của hình nón cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $A B=4 a$. Biết mặt phẳng $(P)$ tạo với đáy nón một góc $60^{\circ}$, thể tính của khối nón đã cho bằng

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f’\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ.

Khẳng định nào đúng trong các khẳng định sau?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f'\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ. Khẳng định nào đúng trong các khẳng định sau? A.\(f\left( c \right) > … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f’\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ.

Khẳng định nào đúng trong các khẳng định sau?

Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { – \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ – \frac{\pi }{6}}^0 {\sin 2x.f’\left( {\sin x} \right)\,{\rm{d}}x} \).

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { - \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ - \frac{\pi }{6}}^0 {\sin 2x.f'\left( {\sin x} \right)\,{\rm{d}}x} \). A. \(I = 10\). B. \(I = - … [Đọc thêm...] vềCho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { – \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ – \frac{\pi }{6}}^0 {\sin 2x.f’\left( {\sin x} \right)\,{\rm{d}}x} \).

Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On tap nguyen ham tich phan, Tích phân, VDC Toan 2023

Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng A. \(1\). B. \(4\). C. \(5\). D. \(10\). Lời giải: Xét \(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + … [Đọc thêm...] vềBiết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng

Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm trên đoạn \(\left[ { – 5;8} \right]\), biết

\(f\left( { – 2} \right) + f\left( 2 \right) = \frac{{70}}{3}\). Đồ thị của \(f’\left( x \right)\) như hình vẽ được xác định là Parabol và đường thẳng trên đoạn đó. .Giá trị \(\int\limits_{ – 5}^8 {f\left( x \right){\rm{d}}x} \) là

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm trên đoạn \(\left[ { - 5;8} \right]\), biết \(f\left( { - 2} \right) + f\left( 2 \right) = \frac{{70}}{3}\). Đồ thị của \(f'\left( x \right)\) như hình vẽ được xác định là Parabol và đường thẳng trên đoạn đó. .Giá trị \(\int\limits_{ - 5}^8 {f\left( x \right){\rm{d}}x} \) là A. \( - 90\) . B. … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm trên đoạn \(\left[ { – 5;8} \right]\), biết

\(f\left( { – 2} \right) + f\left( 2 \right) = \frac{{70}}{3}\). Đồ thị của \(f’\left( x \right)\) như hình vẽ được xác định là Parabol và đường thẳng trên đoạn đó. .Giá trị \(\int\limits_{ – 5}^8 {f\left( x \right){\rm{d}}x} \) là

Biết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} – \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\)

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Biết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} - \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\) A. \(13\). B. \(10\). C. \(20\). D. \(18\). Lời giải: Phương trình hoành độ giao điểm của hai đồ thị hàm số trên … [Đọc thêm...] vềBiết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} – \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\)

Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa … [Đọc thêm...] vềMột chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Cho hàm số \(y = f\left( x \right)\) có đạo hàm và liên tục trên đoạn \(\left[ {0;\,4} \right]\) thỏa mãn \(f\left( 2 \right) = 16\), \(\,\int\limits_0^2 {{{\left[ {f’\left( x \right)} \right]}^2}dx = \frac{{1814}}{{15}}} \) và \(\int\limits_0^4 {f\left( {\sqrt x } \right)dx} = \frac{1}{3}\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = f(x),\,\,x = 1,\,\,x = 4\) và trục hoành.

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho hàm số \(y = f\left( x \right)\) có đạo hàm và liên tục trên đoạn \(\left[ {0;\,4} \right]\) thỏa mãn \(f\left( 2 \right) = 16\), \(\,\int\limits_0^2 {{{\left[ {f'\left( x \right)} \right]}^2}dx = \frac{{1814}}{{15}}} \) và \(\int\limits_0^4 {f\left( {\sqrt x } \right)dx} = \frac{1}{3}\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = f(x),\,\,x = 1,\,\,x = 4\) và … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đạo hàm và liên tục trên đoạn \(\left[ {0;\,4} \right]\) thỏa mãn \(f\left( 2 \right) = 16\), \(\,\int\limits_0^2 {{{\left[ {f’\left( x \right)} \right]}^2}dx = \frac{{1814}}{{15}}} \) và \(\int\limits_0^4 {f\left( {\sqrt x } \right)dx} = \frac{1}{3}\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = f(x),\,\,x = 1,\,\,x = 4\) và trục hoành.

Người ta tạo ra mô hình trang trí trong công viên bằng cách dùng một tấm mica hình dạng là nửa Elip có độ dài trục lớn DB là 10dm, độ dài trục bé là 8dm, vẽ thêm nửa đường tròn tâm là trung điểm của trục lớn DB, bán kính bằng 3dm ở bên trong, xác định 2 điểm A và C trên mép Elip sao cho \(\widehat {AOB} = \widehat {COD} = {45^0}\) (hình vẽ). Sau đó cắt bỏ đi một phần Elip giới hạn bởi 2 đoạn OA, OC, và hai phần của hình tròn bên trong. Người ta đặt một trục quay vào DB rồi quay hai phần mica còn lại (được đánh dấu) xung quanh BD tạo thành mô hình trang trí dạng tròn xoay. Phần không gian mà mô hình đó chiếm chỗ có giá trị gần nhất bằng:

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Người ta tạo ra mô hình trang trí trong công viên bằng cách dùng một tấm mica hình dạng là nửa Elip có độ dài trục lớn DB là 10dm, độ dài trục bé là 8dm, vẽ thêm nửa đường tròn tâm là trung điểm của trục lớn DB, bán kính bằng 3dm ở bên trong, xác định 2 điểm A và C trên mép Elip sao cho \(\widehat {AOB} = \widehat {COD} = {45^0}\) (hình vẽ). Sau đó cắt bỏ đi một phần Elip giới … [Đọc thêm...] vềNgười ta tạo ra mô hình trang trí trong công viên bằng cách dùng một tấm mica hình dạng là nửa Elip có độ dài trục lớn DB là 10dm, độ dài trục bé là 8dm, vẽ thêm nửa đường tròn tâm là trung điểm của trục lớn DB, bán kính bằng 3dm ở bên trong, xác định 2 điểm A và C trên mép Elip sao cho \(\widehat {AOB} = \widehat {COD} = {45^0}\) (hình vẽ). Sau đó cắt bỏ đi một phần Elip giới hạn bởi 2 đoạn OA, OC, và hai phần của hình tròn bên trong. Người ta đặt một trục quay vào DB rồi quay hai phần mica còn lại (được đánh dấu) xung quanh BD tạo thành mô hình trang trí dạng tròn xoay. Phần không gian mà mô hình đó chiếm chỗ có giá trị gần nhất bằng:

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Interim pages omitted …
  • Trang 8
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.