CHUYÊN ĐỀ TOÁN 12 - TÍCH PHÂN ========== booktoan.com chia sẻ đến các bạn tài liệu, giáo án (KHBD), ĐỀ THI, SGK, SGV, SBT MÔN TOÁN LỚP 1;2,3,4,5;6;7;8,9,10,11,12 VÀ TÀI LIỆU ÔN THI TN THPT QUỐC GIA năm học 2023 – 2024, THEO CHƯƠNG TRÌNH GDPT 2018. (LỚP 12 CŨ) -------------- CÁC BẠN THAM KHẢO VÀ SỬ DỤNG. NGUỒN: BOOKTOAN.COM sưu tập trên internet…. ———– xem file THEO THƯ MỤC, … [Đọc thêm...] vềCHUYÊN ĐỀ TOÁN 12 – TÍCH PHÂN
Tích phân
Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\).
Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\). A. \(P = 1\). B. \(P = 4\). C. \(P = 3\). D. \(P = 2\). Lời giải: Cách 1: Ta có \(I = \int\limits_0^{\frac{\pi … [Đọc thêm...] vềCho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\).
Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng
Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng A. \(1\). B. \(4\). C. \(5\). D. \(10\). Lời giải: Xét \(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + … [Đọc thêm...] vềBiết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} – 2{\rm{ khi }}x \le 1\\2x – 1{\rm{ khi }}x > 1\end{array} \right.\). Tính \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( {1 – \sin x} \right)\cos x{\rm{d}}x} \).
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} - 2{\rm{ khi }}x \le 1\\2x - 1{\rm{ khi }}x > 1\end{array} \right.\). Tính \(I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( {1 - \sin x} \right)\cos x{\rm{d}}x} \). A. \( - 1\). B. \( - 2\). C. \(2\). D. \(1\). Lời giải: Xét thấy \(f\left( x \right)\) là hàm liên tục trên … [Đọc thêm...] vềCho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} – 2{\rm{ khi }}x \le 1\\2x – 1{\rm{ khi }}x > 1\end{array} \right.\). Tính \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( {1 – \sin x} \right)\cos x{\rm{d}}x} \).
Giả sử tích phân \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\)
Giả sử tích phân \(I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\) A.\(S = \frac{5}{3}\). B. \(S = \frac{4}{3}\). C. \(S = \frac{8}{3}\). D. \(S = \frac{2}{3}\). Lời giải: Đặt \(t = - x \Rightarrow dt = - dx\) Đổi cận: Với … [Đọc thêm...] vềGiả sử tích phân \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\)
Bên trong hình vuông cạnh \(a\), dựng hình sao bốn cánh đều như hình vẽ sau (các kích thước cần thiết cho như ở trong hình).
Bên trong hình vuông cạnh \(a\), dựng hình sao bốn cánh đều như hình vẽ sau (các kích thước cần thiết cho như ở trong hình). Tính thể tích \(V\) của khối tròn xoay sinh ra khi quay hình sao đó quanh trục \(Ox\). A. \(V = \frac{{5\pi }}{{48}}{a^3}.\) B. \(V = \frac{{5\pi }}{{16}}{a^3}.\) C. \(V = \frac{\pi }{6}{a^3}.\) D. \(V = \frac{\pi }{8}{a^3}.\) Lời … [Đọc thêm...] vềBên trong hình vuông cạnh \(a\), dựng hình sao bốn cánh đều như hình vẽ sau (các kích thước cần thiết cho như ở trong hình).
Tính \(\int\limits_1^{\frac{{\sqrt 6 + \sqrt 2 }}{2}} {\frac{{ – 4{x^4} + {x^2} – 3}}{{{x^4} + 1}}{\rm{d}}x} = \frac{{\sqrt 2 }}{8}\left( {a\sqrt 3 + b + c\pi } \right) + 4\), với \(a,b,c\) là các số nguyên. Khi đó \(a + {b^2} + {c^4}\) bằng
Tính \(\int\limits_1^{\frac{{\sqrt 6 + \sqrt 2 }}{2}} {\frac{{ - 4{x^4} + {x^2} - 3}}{{{x^4} + 1}}{\rm{d}}x} = \frac{{\sqrt 2 }}{8}\left( {a\sqrt 3 + b + c\pi } \right) + 4\), với \(a,b,c\) là các số nguyên. Khi đó \(a + {b^2} + {c^4}\) bằng A. \(20\). B. \(241\). C. \(48\). D. \(196\). Lời giải: Ta có: \(\int\limits_1^{\frac{{\sqrt 6 + \sqrt 2 }}{2}} … [Đọc thêm...] vềTính \(\int\limits_1^{\frac{{\sqrt 6 + \sqrt 2 }}{2}} {\frac{{ – 4{x^4} + {x^2} – 3}}{{{x^4} + 1}}{\rm{d}}x} = \frac{{\sqrt 2 }}{8}\left( {a\sqrt 3 + b + c\pi } \right) + 4\), với \(a,b,c\) là các số nguyên. Khi đó \(a + {b^2} + {c^4}\) bằng
Biết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 – x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b +
C.\)
Biết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 - x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b + C.\) A. \(P = - 3\). B. \(P = - 2\). C. \(P = 2\). D. \(P = 1\). Lời giải Đặt \(x = 2\cos 2t\) với \(t \in \left[ {0;\frac{\pi }{4}} \right]\). Suy ra \({\rm{d}}x = - 4\sin 2t{\rm{d}}t.\) Khi \(x … [Đọc thêm...] vềBiết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 – x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b +
C.\)
Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng
Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f'\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng A. \(15\). B. \(20\). C. \(25\). D. \(5\). Lời giải: Vì với mọi \(x \in … [Đọc thêm...] vềVới mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 - 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { - 2} \right) = - 10\). Khi đó \(F\left( 3 \right)\) bằng A. \(36 + … [Đọc thêm...] vềCho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng