• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Tích phân

Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Gọi \(G\left( x \right)\) là một nguyên hàm của hàm số \(f’\left( x \right)\ln x\) và \(G\left( 1 \right) = – \frac{1}{2}\). Phương trình \(G\left( {2{x^2} – 1} \right) = m\) có 4 nghiệm phân biệt khi \(m\) thuộc khoảng nào?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On tap nguyen ham tich phan, Tích phân

Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Gọi \(G\left( x \right)\) là một nguyên hàm của hàm số \(f'\left( x \right)\ln x\) và \(G\left( 1 \right) = - \frac{1}{2}\). Phương trình \(G\left( {2{x^2} - 1} \right) = m\) có 4 nghiệm phân biệt khi \(m\) thuộc khoảng nào? A. \(\left( {1;2} \right)\). B. … [Đọc thêm...] vềCho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Gọi \(G\left( x \right)\) là một nguyên hàm của hàm số \(f’\left( x \right)\ln x\) và \(G\left( 1 \right) = – \frac{1}{2}\). Phương trình \(G\left( {2{x^2} – 1} \right) = m\) có 4 nghiệm phân biệt khi \(m\) thuộc khoảng nào?

Cho hàm số bậc nhất \(f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Tích phân \(\int\limits_0^4 {f\left( x \right).dx} \) bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On tap nguyen ham tich phan, Tích phân

Cho hàm số bậc nhất \(f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Tích phân \(\int\limits_0^4 {f\left( x \right).dx} \) bằng A. \(\frac{4}{3}\). B. \(16\). C. \(\frac{{26}}{3}\). D. \(8\). Lời giải: Cách 1: Gọi các điểm \(A,B,C,D\) như hình vẽ. Ta có \(\frac{{OB}}{{B{\rm{D}}}} = \frac{{OA}}{{DC}} = \frac{1}{5}\) mà \(OB + B{\rm{D}} = 4\) nên \(OB = … [Đọc thêm...] vềCho hàm số bậc nhất \(f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Tích phân \(\int\limits_0^4 {f\left( x \right).dx} \) bằng

Bài tập luyện tập TÍCH PHÂN – 2023

Ngày 10/01/2023 Thuộc chủ đề:Toán lớp 12 Tag với:On tap nguyen ham tich phan, Tích phân

Bài tập luyện tập TÍCH PHÂN – 2023 ========== booktoan.com chia sẻ Bài tập luyện tập TÍCH PHÂN – 2023. Đề có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong học toán 12 năm học 2022 – 2023. NGUỒN: BOOKTOAN.COM ———– xem file de thi — ============= xem online file docx ========= =========== == … [Đọc thêm...] vềBài tập luyện tập TÍCH PHÂN – 2023

Trắc nghiệm Tích phân sử dụng MTBT Casio – FILE WORD

Ngày 26/06/2022 Thuộc chủ đề:Thi THPT Quốc gia môn toán Tag với:Casio Toán 12, Tích phân

Trắc nghiệm Tích phân sử dụng MTBT Casio ================ ĐỀ THI TOAN DỰA THEO PHẦN PHÁT TRIỂN THEO ĐỀ THAM KHẢO TOÁN CỦA BỘ GDDT 2022 CÓ LỜI GIẢI CHI TIẾT - FILE WORD ========== booktoan.com chia sẻ đến các bạn Bộ đề PHÁT TRIỂN THEO ĐÊ MÔN TOÁN năm 2022. Đề có đáp án chi tiết giúp các bạn đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt … [Đọc thêm...] vềTrắc nghiệm Tích phân sử dụng MTBT Casio – FILE WORD

Nếu \(\int\limits_1^3 {f\left( x \right){\rm{d}}x = – 2} \) thì \(\int\limits_1^3 {\left[ {2f\left( x \right) – 3{x^2} + 1} \right]\,} {\rm{d}}x\) bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Tích phân, TN THPT 2021

Câu hỏi: Nếu \(\int\limits_1^3 {f\left( x \right){\rm{d}}x = - 2} \) thì \(\int\limits_1^3 {\left[ {2f\left( x \right) - 3{x^2} + 1} \right]\,} {\rm{d}}x\) bằng A. \( - 30\). B. \( - 28\). C. \( - 26\). D. \( - 27\). GY: Ta có \(\int\limits_1^3 {\left[ {2f\left( x \right) - 3{x^2} + 1} \right]\,} {\rm{d}}x = 2\int\limits_1^3 {f\left( x \right){\rm{d}}x + … [Đọc thêm...] vềNếu \(\int\limits_1^3 {f\left( x \right){\rm{d}}x = – 2} \) thì \(\int\limits_1^3 {\left[ {2f\left( x \right) – 3{x^2} + 1} \right]\,} {\rm{d}}x\) bằng

Cho \(\int\limits_{ – 1}^2 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_{ – 1}^2 {g\left( x \right){\rm{d}}x} = – 1\). Khi đó \(I = \int\limits_{ – 1}^2 {\left[ {x + 2f\left( x \right) – 3g\left( x \right)} \right]{\rm{d}}x} \) bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Tích phân, TN THPT 2021

Câu hỏi: Cho \(\int\limits_{ - 1}^2 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_{ - 1}^2 {g\left( x \right){\rm{d}}x} = - 1\). Khi đó \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]{\rm{d}}x} \) bằng A. \(I = \frac{{17}}{2}\). B. \(I = \frac{7}{2}\). C. \(I = \frac{5}{2}\). D. \(I = \frac{{11}}{2}\). GY: Ta … [Đọc thêm...] vềCho \(\int\limits_{ – 1}^2 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_{ – 1}^2 {g\left( x \right){\rm{d}}x} = – 1\). Khi đó \(I = \int\limits_{ – 1}^2 {\left[ {x + 2f\left( x \right) – 3g\left( x \right)} \right]{\rm{d}}x} \) bằng

Nếu \(\int\limits_{ – 1}^3 {f\left( x \right){\rm{d}}x = 2} \) thì \(\int\limits_{ – 1}^3 {\left[ {2x – f\left( x \right)} \right]{\rm{d}}x} \) bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Tích phân, TN THPT 2021

Câu hỏi: Nếu \(\int\limits_{ - 1}^3 {f\left( x \right){\rm{d}}x = 2} \) thì \(\int\limits_{ - 1}^3 {\left[ {2x - f\left( x \right)} \right]{\rm{d}}x} \) bằng A. \(6\). B. \(8\). C. \(10\). D. \(12\). GY: Ta có: \(\int\limits_{ - 1}^3 {\left[ {2x - f\left( x \right)} \right]{\rm{d}}x} = 2\int\limits_{ - 1}^3 {x{\rm{d}}x - \int\limits_{ - 1}^3 {f\left( x … [Đọc thêm...] vềNếu \(\int\limits_{ – 1}^3 {f\left( x \right){\rm{d}}x = 2} \) thì \(\int\limits_{ – 1}^3 {\left[ {2x – f\left( x \right)} \right]{\rm{d}}x} \) bằng

Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 5\). Khi đó \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]{\rm{d}}x} \) bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Tích phân, TN THPT 2021

Câu hỏi: Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 5\). Khi đó \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]{\rm{d}}x} \) bằng A. \(I = 7\). B. \(I = 5 + \frac{\pi }{2}\). C. \(I = 3\). D. \(I = 5 + \pi \). GY: Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right)\, + 2\sin x} … [Đọc thêm...] vềCho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 5\). Khi đó \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]{\rm{d}}x} \) bằng

Kỹ thuật tích phân từng phần trong hàm ẩn (VDC)

Ngày 09/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân, Tích phân hàm ẩn

Vấn đề 3. Kỹ thuật tích phân từng phần. ============== Câu 16 Cho hàm số $f(x)$ thỏa mãn $\displaystyle\int\limits_0^3 x \cdot f'(x) \cdot \mathrm{e}^{f(x)}\mathrm{\,d}x=8$ và $f(3)=\ln 3$. Tính $I=\displaystyle\int\limits_0^3 \mathrm{e}^{f(x)}\mathrm{\,d}x$. Các phương án chọn từ trên xuống là A B C D $I=1$ $I=11$ $I=8-\ln 3$ $I=8+\ln 3$ Lời Giải: Đặt … [Đọc thêm...] vềKỹ thuật tích phân từng phần trong hàm ẩn (VDC)

Kỹ thuật đổi biến trong Tích Phân (VDC)

Ngày 08/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân, Tích phân hàm ẩn

Vấn đề 2. Kỹ thuật đổi biến. ============== Câu 6 Cho $\displaystyle\int\limits_0^{2017} f(x)\mathrm{\,d}x=2$. Tính tích phân $I=\displaystyle\int\limits_0^{\sqrt{\mathrm{e}^{2017}-1}} \dfrac{x}{x^2+1} \cdot f\left[\ln (x^2+1)\right]\mathrm{d}x$. Các phương án chọn từ trên xuống là A B C D $I=1$ $I=2$ $I=4$ $I=5$ Lời Giải: Đặt $t=\ln (x^2+1),$ suy ra … [Đọc thêm...] vềKỹ thuật đổi biến trong Tích Phân (VDC)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.