Trong không gian \(Oxyz\), viết phương trình mặt phẳng \((P)\) chứa đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1\\y = 1 - 2t\\z = 1 + t\end{array} \right.,\,\,\,\left( {t \in \mathbb{R}} \right)\) và đi qua điểm \(A\left( { - 4;3;2} \right).\) A. \(4x + 5y + 10z - 19 = 0\). B. \(4x + 5y + z - 9 = 0\). C. \(5x + 4y + 3z - 9 = 0\). D. \(5x + 5y + 10z - 8 = 0\). Lời … [Đọc thêm...] vềTrong không gian \(Oxyz\), viết phương trình mặt phẳng \((P)\) chứa đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1\\y = 1 – 2t\\z = 1 + t\end{array} \right.,\,\,\,\left( {t \in \mathbb{R}} \right)\) và đi qua điểm \(A\left( { – 4;3;2} \right).\)
VDC Toan 2023
Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 1}}{{ – 1}}\) và \({d_2}:\frac{{x + 1}}{{ – 1}} = \frac{y}{2} = \frac{{z – 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây?
Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}\) và \({d_2}:\frac{{x + 1}}{{ - 1}} = \frac{y}{2} = \frac{{z - 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây? A. \(M\left( {1;1;0} \right)\). B. \(N\left( {0;1;1} … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 1}}{{ – 1}}\) và \({d_2}:\frac{{x + 1}}{{ – 1}} = \frac{y}{2} = \frac{{z – 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây?
Trong không gian hệ trục tọa độ \(Oxyz\), cho đường thẳng \({\rm{d}}:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{{ – 2}}\), \(I\left( {{\rm{1;1;1}}} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) chứa đường thẳng \({\rm{d}}\), đồng thời khoảng cách từ \(I\) đến mặt phẳng \(\left( P \right)\) bằng \(\sqrt 3 \).
Trong không gian hệ trục tọa độ \(Oxyz\), cho đường thẳng \({\rm{d}}:\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{{ - 2}}\), \(I\left( {{\rm{1;1;1}}} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) chứa đường thẳng \({\rm{d}}\), đồng thời khoảng cách từ \(I\) đến mặt phẳng \(\left( P \right)\) bằng \(\sqrt 3 \). A. \(\left( P \right){\rm{:}}\,x - y + z - 2 … [Đọc thêm...] vềTrong không gian hệ trục tọa độ \(Oxyz\), cho đường thẳng \({\rm{d}}:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{{ – 2}}\), \(I\left( {{\rm{1;1;1}}} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) chứa đường thẳng \({\rm{d}}\), đồng thời khoảng cách từ \(I\) đến mặt phẳng \(\left( P \right)\) bằng \(\sqrt 3 \).
Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 2}}{{2m}} = \frac{y}{3} = \frac{{z – 3}}{{ – 3}}\) và đường thẳng \({d_2}\):\(\frac{{x – 3}}{2} = \frac{y}{3} = \frac{{z – 1}}{{ – 2}}\) . Biết rằng tồn tại một mặt phẳng \(\left( \alpha \right)\) có phương trình \(6x + by + cz + d = 0\) chứa đồng thời cả hai đường thẳng \({d_1}\) và \({d_2}\). Giá trị của biểu thức \(T = {b^2} + {c^2} + {d^2}\) bằng:
Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x - 2}}{{2m}} = \frac{y}{3} = \frac{{z - 3}}{{ - 3}}\) và đường thẳng \({d_2}\):\(\frac{{x - 3}}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 2}}\) . Biết rằng tồn tại một mặt phẳng \(\left( \alpha \right)\) có phương trình \(6x + by + cz + d = 0\) chứa đồng thời cả hai đường thẳng \({d_1}\) và \({d_2}\). Giá trị của biểu … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 2}}{{2m}} = \frac{y}{3} = \frac{{z – 3}}{{ – 3}}\) và đường thẳng \({d_2}\):\(\frac{{x – 3}}{2} = \frac{y}{3} = \frac{{z – 1}}{{ – 2}}\) . Biết rằng tồn tại một mặt phẳng \(\left( \alpha \right)\) có phương trình \(6x + by + cz + d = 0\) chứa đồng thời cả hai đường thẳng \({d_1}\) và \({d_2}\). Giá trị của biểu thức \(T = {b^2} + {c^2} + {d^2}\) bằng:
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và đường thẳng \(\Delta :\frac{{x – 6}}{{ – 3}} = \frac{{y – 2}}{2} = \frac{{z – 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4\,;\,3\,;\,4} \right)\) song song với đường thẳng \(\Delta \) và tiếp xúc với mặt cầu \(\left( S \right)\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\). Tính \(a – b + c\).
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) và đường thẳng \(\Delta :\frac{{x - 6}}{{ - 3}} = \frac{{y - 2}}{2} = \frac{{z - 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4\,;\,3\,;\,4} \right)\) song song với đường thẳng \(\Delta … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và đường thẳng \(\Delta :\frac{{x – 6}}{{ – 3}} = \frac{{y – 2}}{2} = \frac{{z – 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4\,;\,3\,;\,4} \right)\) song song với đường thẳng \(\Delta \) và tiếp xúc với mặt cầu \(\left( S \right)\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\). Tính \(a – b + c\).
Cho hai đường thẳng chéo nhau \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}\) và \({d_2}:\left\{ \begin{array}{l}x = 2 – 2t\\y = 3\\z = t\end{array} \right.\). Mặt phẳng song song và cách đều \({d_1}\) và \({d_2}\) có phương trình là
Cho hai đường thẳng chéo nhau \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và \({d_2}:\left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} \right.\). Mặt phẳng song song và cách đều \({d_1}\) và \({d_2}\) có phương trình là A. \(x + 5y - 2z + 12 = 0\). B. \(x + 5y + 2z - 12 = 0\). C. \(x - 5y + 2z - 12 = 0\). D. \(x + 5y + 2z + 12 = 0\). Lời … [Đọc thêm...] vềCho hai đường thẳng chéo nhau \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}\) và \({d_2}:\left\{ \begin{array}{l}x = 2 – 2t\\y = 3\\z = t\end{array} \right.\). Mặt phẳng song song và cách đều \({d_1}\) và \({d_2}\) có phương trình là
Trong không gian (Oxyz) cho A( 0;0;10),B(3;4;6) Xét các điểm M thay đổi sao cho tam giác OAM không có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Trong không gian \(Oxyz,\) cho \(A\left( {0;0;10} \right),B\left( {3;4;6} \right).\) Xét các điểm \(M\) thay đổi sao cho tam giác \(OAM\) không có góc tù và có diện tích bằng \(15.\) Giá trị nhỏ nhất của độ dài đoạn thẳng \(MB\) thuộc khoảng nào dưới đây? A. \(\left( {4;\,5} \right).\) B. \(\left( {3;\,4} \right).\) C. \(\left( {2;\,3} \right).\) … [Đọc thêm...] vềTrong không gian (Oxyz) cho A( 0;0;10),B(3;4;6) Xét các điểm M thay đổi sao cho tam giác OAM không có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Cho khối nón có đỉnh S, chiều cao bằng 8 và thể tích bằng \(\frac{{800\pi }}{3}\). Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (SAB) bằng
Cho khối nón có đỉnh \(S\) , chiều cao bằng 8 và thể tích bằng \(\frac{{800\pi }}{3}\) . Gọi \(A\) và \(B\) là hai điểm thuộc đường tròn đáy sao cho \(AB = 12\) , khoảng cách từ tâm của đường tròn đáy đến mặt phẳng \(\left( {SAB} \right)\) bằng A. \(8\sqrt 2 \) . B. \(\frac{{24}}{5}\) . C. \(4\sqrt 2 \) . D. \(\frac{5}{{24}}\) . Lời giải: … [Đọc thêm...] vềCho khối nón có đỉnh S, chiều cao bằng 8 và thể tích bằng \(\frac{{800\pi }}{3}\). Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (SAB) bằng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {4;5;6} \right);B\left( {1;3;2} \right)\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( {Oyz} \right)\). Gọi \(C\) là điểm nằm trên trục \(Oz\) sao cho \(BC\) và \(AH\) là hai đường thẳng cắt nhau. Xác định tọa độ điểm \(C\).
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {4;5;6} \right);B\left( {1;3;2} \right)\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( {Oyz} \right)\). Gọi \(C\) là điểm nằm trên trục \(Oz\) sao cho \(BC\) và \(AH\) là hai đường thẳng cắt nhau. Xác định tọa độ điểm \(C\). A. \(C\left( {0;0;2} \right)\). B. \(C\left( {0;0; - \frac{2}{3}} … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai điểm \(A\left( {4;5;6} \right);B\left( {1;3;2} \right)\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( {Oyz} \right)\). Gọi \(C\) là điểm nằm trên trục \(Oz\) sao cho \(BC\) và \(AH\) là hai đường thẳng cắt nhau. Xác định tọa độ điểm \(C\).
Có bao nhiêu giá trị nguyên của tham số \(a \in \left( { – 10; + \infty } \right)\) để hàm số \(y = \left| {{x^3} + \left( {a + 2} \right)x + 9 – {a^2}} \right|\) đồng biến trên khoảng \(\left( {0;1} \right)\) ?
Có bao nhiêu giá trị nguyên của tham số \(a \in \left( { - 10; + \infty } \right)\) để hàm số \(y = \left| {{x^3} + \left( {a + 2} \right)x + 9 - {a^2}} \right|\) đồng biến trên khoảng \(\left( {0;1} \right)\) ? A. 12. B. 11. C. 6. D. 5. Lời giải: Chọn B Xét \(f\left( x \right) = {x^3} + … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(a \in \left( { – 10; + \infty } \right)\) để hàm số \(y = \left| {{x^3} + \left( {a + 2} \right)x + 9 – {a^2}} \right|\) đồng biến trên khoảng \(\left( {0;1} \right)\) ?