• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Trắc nghiệm Phương trình mặt phẳng

Vectơ pháp tuyến và vectơ chỉ phương của mặt phẳng, đường thẳng

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:PTDT, PTMP

BÀI TẬP VỀ Vectơ pháp tuyến và vectơ chỉ phương của mặt phẳng, đường thẳng Câu 1: Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right):3x + 2y - 4z + 1 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( \alpha \right)\)? A. \(\overrightarrow {{n_2}} = \left( {3\,;\,2\,;\,4} \right)\). B. \(\overrightarrow {{n_3}} = \left( {2\,;\, - 4\,;\,1} … [Đọc thêm...] vềVectơ pháp tuyến và vectơ chỉ phương của mặt phẳng, đường thẳng

Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 1}}{{ – 1}}\) và \({d_2}:\frac{{x + 1}}{{ – 1}} = \frac{y}{2} = \frac{{z – 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây?

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}\) và \({d_2}:\frac{{x + 1}}{{ - 1}} = \frac{y}{2} = \frac{{z - 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây? A. \(M\left( {1;1;0} \right)\). B. \(N\left( {0;1;1} … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 1}}{{ – 1}}\) và \({d_2}:\frac{{x + 1}}{{ – 1}} = \frac{y}{2} = \frac{{z – 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây?

Trong không gian hệ trục tọa độ \(Oxyz\), cho đường thẳng \({\rm{d}}:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{{ – 2}}\), \(I\left( {{\rm{1;1;1}}} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) chứa đường thẳng \({\rm{d}}\), đồng thời khoảng cách từ \(I\) đến mặt phẳng \(\left( P \right)\) bằng \(\sqrt 3 \).

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian hệ trục tọa độ \(Oxyz\), cho đường thẳng \({\rm{d}}:\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{{ - 2}}\), \(I\left( {{\rm{1;1;1}}} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) chứa đường thẳng \({\rm{d}}\), đồng thời khoảng cách từ \(I\) đến mặt phẳng \(\left( P \right)\) bằng \(\sqrt 3 \). A. \(\left( P \right){\rm{:}}\,x - y + z - 2 … [Đọc thêm...] vềTrong không gian hệ trục tọa độ \(Oxyz\), cho đường thẳng \({\rm{d}}:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{{ – 2}}\), \(I\left( {{\rm{1;1;1}}} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) chứa đường thẳng \({\rm{d}}\), đồng thời khoảng cách từ \(I\) đến mặt phẳng \(\left( P \right)\) bằng \(\sqrt 3 \).

Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 2}}{{2m}} = \frac{y}{3} = \frac{{z – 3}}{{ – 3}}\) và đường thẳng \({d_2}\):\(\frac{{x – 3}}{2} = \frac{y}{3} = \frac{{z – 1}}{{ – 2}}\) . Biết rằng tồn tại một mặt phẳng \(\left( \alpha \right)\) có phương trình \(6x + by + cz + d = 0\) chứa đồng thời cả hai đường thẳng \({d_1}\) và \({d_2}\). Giá trị của biểu thức \(T = {b^2} + {c^2} + {d^2}\) bằng:

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x - 2}}{{2m}} = \frac{y}{3} = \frac{{z - 3}}{{ - 3}}\) và đường thẳng \({d_2}\):\(\frac{{x - 3}}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 2}}\) . Biết rằng tồn tại một mặt phẳng \(\left( \alpha \right)\) có phương trình \(6x + by + cz + d = 0\) chứa đồng thời cả hai đường thẳng \({d_1}\) và \({d_2}\). Giá trị của biểu … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 2}}{{2m}} = \frac{y}{3} = \frac{{z – 3}}{{ – 3}}\) và đường thẳng \({d_2}\):\(\frac{{x – 3}}{2} = \frac{y}{3} = \frac{{z – 1}}{{ – 2}}\) . Biết rằng tồn tại một mặt phẳng \(\left( \alpha \right)\) có phương trình \(6x + by + cz + d = 0\) chứa đồng thời cả hai đường thẳng \({d_1}\) và \({d_2}\). Giá trị của biểu thức \(T = {b^2} + {c^2} + {d^2}\) bằng:

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và đường thẳng \(\Delta :\frac{{x – 6}}{{ – 3}} = \frac{{y – 2}}{2} = \frac{{z – 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4\,;\,3\,;\,4} \right)\) song song với đường thẳng \(\Delta \) và tiếp xúc với mặt cầu \(\left( S \right)\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\). Tính \(a – b + c\).

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) và đường thẳng \(\Delta :\frac{{x - 6}}{{ - 3}} = \frac{{y - 2}}{2} = \frac{{z - 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4\,;\,3\,;\,4} \right)\) song song với đường thẳng \(\Delta … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và đường thẳng \(\Delta :\frac{{x – 6}}{{ – 3}} = \frac{{y – 2}}{2} = \frac{{z – 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4\,;\,3\,;\,4} \right)\) song song với đường thẳng \(\Delta \) và tiếp xúc với mặt cầu \(\left( S \right)\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\). Tính \(a – b + c\).

Cho hai đường thẳng chéo nhau \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}\) và \({d_2}:\left\{ \begin{array}{l}x = 2 – 2t\\y = 3\\z = t\end{array} \right.\). Mặt phẳng song song và cách đều \({d_1}\) và \({d_2}\) có phương trình là

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Cho hai đường thẳng chéo nhau \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và \({d_2}:\left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} \right.\). Mặt phẳng song song và cách đều \({d_1}\) và \({d_2}\) có phương trình là A. \(x + 5y - 2z + 12 = 0\). B. \(x + 5y + 2z - 12 = 0\). C. \(x - 5y + 2z - 12 = 0\). D. \(x + 5y + 2z + 12 = 0\). Lời … [Đọc thêm...] vềCho hai đường thẳng chéo nhau \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}\) và \({d_2}:\left\{ \begin{array}{l}x = 2 – 2t\\y = 3\\z = t\end{array} \right.\). Mặt phẳng song song và cách đều \({d_1}\) và \({d_2}\) có phương trình là

Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{{ – 1}}\), \({d_2}:\left\{ \begin{array}{l}x = t\\y = 3\\z = – 2 + t\end{array} \right.\). Có bao nhiêu mặt phẳng song song với cả \({d_1},{d_2}\)và tiếp xúc với mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x – 2y – 2z – 3 = 0?\)

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{{ - 1}}\), \({d_2}:\left\{ \begin{array}{l}x = t\\y = 3\\z = - 2 + t\end{array} \right.\). Có bao nhiêu mặt phẳng song song với cả \({d_1},{d_2}\)và tiếp xúc với mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 3 = 0?\) A. Vô số. B. \(0.\) C. \(2.\) D. … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai đường thẳng \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{{ – 1}}\), \({d_2}:\left\{ \begin{array}{l}x = t\\y = 3\\z = – 2 + t\end{array} \right.\). Có bao nhiêu mặt phẳng song song với cả \({d_1},{d_2}\)và tiếp xúc với mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x – 2y – 2z – 3 = 0?\)

Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(A\left( {2;4;1} \right)\), \(B\left( { – 1;1;3} \right)\)và mặt phẳng \(\left( P \right):x – 3y + 2z – 5 = 0\). Một mặt phẳng \(\left( Q \right)\) đi qua hai điểm \(A\), \(B\) và vuông góc với \(\left( P \right)\) có dạng: \(ax + by + cz – 11 = 0\). Khẳng định nào sau đây là đúng?

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(A\left( {2;4;1} \right)\), \(B\left( { - 1;1;3} \right)\)và mặt phẳng \(\left( P \right):x - 3y + 2z - 5 = 0\). Một mặt phẳng \(\left( Q \right)\) đi qua hai điểm \(A\), \(B\) và vuông góc với \(\left( P \right)\) có dạng: \(ax + by + cz - 11 = 0\). Khẳng định nào sau đây là đúng? A. \(a + b = c\). B. \(a + b + c = … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(A\left( {2;4;1} \right)\), \(B\left( { – 1;1;3} \right)\)và mặt phẳng \(\left( P \right):x – 3y + 2z – 5 = 0\). Một mặt phẳng \(\left( Q \right)\) đi qua hai điểm \(A\), \(B\) và vuông góc với \(\left( P \right)\) có dạng: \(ax + by + cz – 11 = 0\). Khẳng định nào sau đây là đúng?

Trong không gian Oxyz, cho điểm \(A\left( { – 1\,;\,3\,;\,0} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y = 3 – 2t\\z = – 2 + 5t\end{array} \right.\). Mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(A\) và chứa đường thẳng \(d\) đi qua điểm nào dưới đây?

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian Oxyz, cho điểm \(A\left( { - 1\,;\,3\,;\,0} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y = 3 - 2t\\z = - 2 + 5t\end{array} \right.\). Mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(A\) và chứa đường thẳng \(d\) đi qua điểm nào dưới đây? A. \(M\left( {2\,;\, - 3\,;\,1} \right)\). B. \(N\left( {2\,;\,2\,;\,1} \right)\). C. \(P\left( { - … [Đọc thêm...] vềTrong không gian Oxyz, cho điểm \(A\left( { – 1\,;\,3\,;\,0} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y = 3 – 2t\\z = – 2 + 5t\end{array} \right.\). Mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(A\) và chứa đường thẳng \(d\) đi qua điểm nào dưới đây?

Trong không gian với hệ toạ độ \(Oxyz\), cho đường thẳng \(\Delta :\frac{{x – 1}}{3} = \frac{{y + 2}}{{ – 2}} = \frac{{z – 3}}{1}\) và mặt phẳng \(\left( P \right):x + y – z – 1 = 0\). Viết phương trình mặt phẳng \(\left( Q \right)\) đối xứng với \(\left( P \right)\) qua \(\Delta \).

Đăng ngày: 26/03/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mat phang VDC, VDC Toan 2023

Trong không gian với hệ toạ độ \(Oxyz\), cho đường thẳng \(\Delta :\frac{{x - 1}}{3} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và mặt phẳng \(\left( P \right):x + y - z - 1 = 0\). Viết phương trình mặt phẳng \(\left( Q \right)\) đối xứng với \(\left( P \right)\) qua \(\Delta \). A. \(x + y - z + 9 = 0\). B. \(x + y - z - 7 = 0\). C. \(3x - 2y + z - 7 = 0\). D. \(x + … [Đọc thêm...] vềTrong không gian với hệ toạ độ \(Oxyz\), cho đường thẳng \(\Delta :\frac{{x – 1}}{3} = \frac{{y + 2}}{{ – 2}} = \frac{{z – 3}}{1}\) và mặt phẳng \(\left( P \right):x + y – z – 1 = 0\). Viết phương trình mặt phẳng \(\left( Q \right)\) đối xứng với \(\left( P \right)\) qua \(\Delta \).

  • Chuyển tới trang 1
  • Chuyển tới trang 2
  • Chuyển tới trang 3
  • Interim pages omitted …
  • Chuyển tới trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.