(De toan 2022) Trong không gian \(Oxyz\), cho điểm \(A\left( {2;1;1} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Oy\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là
A. \(x + z = 0\). B. \(x - z = 0\). C. \(2x + z = 0\). D. \(2x - z = 0\).
Lời giải
Gọi \(K\left( {0;1;0} \right)\) là hình chiếu … [Đọc thêm...] về (De toan 2022) Trong không gian \(Oxyz\), cho điểm \(A\left( {2;1;1} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Oy\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là
Phuong trinh mat phang VDC
Đề toán 2022 [Mức độ 3] Trong không gian \(Oxyz\), cho điểm \(A(1;2;2)\). Gọi \((P)\) là mặt phẳng chứa \(Ox\) sao cho khoảng cách từ \(A\) đến mặt phẳng \((P)\) lớn nhất. Phương trình mặt phẳng \((P)\) là:
Đề toán 2022 [Mức độ 3] Trong không gian \(Oxyz\), cho điểm \(A(1;2;2)\). Gọi \((P)\) là mặt phẳng chứa \(Ox\) sao cho khoảng cách từ \(A\) đến mặt phẳng \((P)\) lớn nhất. Phương trình mặt phẳng \((P)\) là:
A. \(2y - z = 0\). B. \(2y - z = 0\). C. \(y - z = 0\). D. \(y + z = 0\).
Lời giải
Gọi \(H\) là hình chiếu của \(A\) lên mặt phẳng \((P)\) và \(K\) là hình chiếu … [Đọc thêm...] về Đề toán 2022 [Mức độ 3] Trong không gian \(Oxyz\), cho điểm \(A(1;2;2)\). Gọi \((P)\) là mặt phẳng chứa \(Ox\) sao cho khoảng cách từ \(A\) đến mặt phẳng \((P)\) lớn nhất. Phương trình mặt phẳng \((P)\) là:
Đề toán 2022 Trong không gian \(Oxyz\), cho điểm \(A\left( {1;2; – 2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Ox\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là:
Đề toán 2022 Trong không gian \(Oxyz\), cho điểm \(A\left( {1;2; - 2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Ox\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là:
A.\(2y + z = 0\). B. \(2y - z = 0\) . C. \(y + z = 0\). D. \(y - z = 0\).
Lời giải
Gọi \(K\) là hình chiếu vuông góc của điểm … [Đọc thêm...] về Đề toán 2022 Trong không gian \(Oxyz\), cho điểm \(A\left( {1;2; – 2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Ox\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là:
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 1} \right)^2} = 6\) tâm \(I\). Gọi \(\left( \alpha \right)\) là mặt phẳng vuông góc với đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y – 3}}{{ – 4}} = \frac{z}{1}\) và cắt mặt cầu \(\left( S \right)\) theo đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh \(I\), đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết \(\left( \alpha \right)\) không đi qua gốc tọa độ, gọi \(H\left( {{x_H},{y_H},{z_H}} \right)\) là tâm đường tròn \(\left( C \right)\). Giá trị của biểu thức \(T = {x_H} + {y_H} + {z_H}\) bằng:
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 6\) tâm \(I\). Gọi \(\left( \alpha \right)\) là mặt phẳng vuông góc … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 1} \right)^2} = 6\) tâm \(I\). Gọi \(\left( \alpha \right)\) là mặt phẳng vuông góc với đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y – 3}}{{ – 4}} = \frac{z}{1}\) và cắt mặt cầu \(\left( S \right)\) theo đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh \(I\), đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết \(\left( \alpha \right)\) không đi qua gốc tọa độ, gọi \(H\left( {{x_H},{y_H},{z_H}} \right)\) là tâm đường tròn \(\left( C \right)\). Giá trị của biểu thức \(T = {x_H} + {y_H} + {z_H}\) bằng:
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 – t\\y = t\\z = m – 1 + t\end{array} \right.\). Gọi \(T\) là tập tất cả các giá trị của \(m\) để \(d\) cắt \(\left( S \right)\) tại hai điểm phân biệt \(A\), \(B\) sao cho các tiếp diện của \(\left( S \right)\) tại \(A\) và \(B\) tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp \(T\).
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 - t\\y = t\\z = m - 1 + … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 – t\\y = t\\z = m – 1 + t\end{array} \right.\). Gọi \(T\) là tập tất cả các giá trị của \(m\) để \(d\) cắt \(\left( S \right)\) tại hai điểm phân biệt \(A\), \(B\) sao cho các tiếp diện của \(\left( S \right)\) tại \(A\) và \(B\) tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp \(T\).
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) và các điểm \(A\left( {1\,;\,0\,;\,2} \right)\), \(B\left( { – 1\,;\,2\,;\,2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\), \(B\). Khối nón \(\left( N \right)\) có đỉnh là tâm của mặt cầu \(\left( S \right)\), đường tròn đáy là thiết diện của \(\left( P \right)\) với mặt cầu \(\left( S \right)\) sao cho khối nón \(\left( N \right)\) có diện tích đáy nhỏ nhất. Mặt phẳng \(\left( P \right)\) chứa đường tròn đáy có dạng \(\left( P \right):ax + by + cz + 3 = 0\). Tính \(T = a + 2b + 3c\).
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\) và các điểm \(A\left( {1\,;\,0\,;\,2} \right)\), \(B\left( { - … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) và các điểm \(A\left( {1\,;\,0\,;\,2} \right)\), \(B\left( { – 1\,;\,2\,;\,2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\), \(B\). Khối nón \(\left( N \right)\) có đỉnh là tâm của mặt cầu \(\left( S \right)\), đường tròn đáy là thiết diện của \(\left( P \right)\) với mặt cầu \(\left( S \right)\) sao cho khối nón \(\left( N \right)\) có diện tích đáy nhỏ nhất. Mặt phẳng \(\left( P \right)\) chứa đường tròn đáy có dạng \(\left( P \right):ax + by + cz + 3 = 0\). Tính \(T = a + 2b + 3c\).
Trong không gian\(Oxyz\) cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 12\). Gọi \(\left( P \right)\) là mặt phẳng qua \(A\left( {1;0;0} \right),B\left( {0;0; – 1} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu \(\left( S \right)\) và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết mặt phẳng \(\left( P \right)\) có phương trình là \(x + ay + bz + c = 0\), tính \(4a + b + c\)
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian\(Oxyz\) cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 12\). Gọi \(\left( P \right)\) là mặt phẳng qua \(A\left( {1;0;0} … [Đọc thêm...] về Trong không gian\(Oxyz\) cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 12\). Gọi \(\left( P \right)\) là mặt phẳng qua \(A\left( {1;0;0} \right),B\left( {0;0; – 1} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu \(\left( S \right)\) và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết mặt phẳng \(\left( P \right)\) có phương trình là \(x + ay + bz + c = 0\), tính \(4a + b + c\)
Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai điểm \(A(1;2; – 3)\) và \(B( – 3;6; – 1)\). Hình nón \(\left( {{N_1}} \right)\) có đỉnh A, chiều cao AB, bán kính đáy \({r_1}\). Một hình nón \(\left( {{N_2}} \right)\) có đỉnhB và có đáy là một thiết diện nằm trên \(\left( \alpha \right)\) và song song với đáy của hình nón \(\left( {{N_1}} \right)\). Biết mặt phẳng \(\left( \alpha \right)\) có dạng \(2x + by + cz + d = 0\) sao cho thể tích khối nón \(({N_2})\)đạt giá trị lớn nhất. Tính \(b + c + d\).
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai điểm \(A(1;2; - 3)\) và \(B( - 3;6; - 1)\). Hình nón \(\left( {{N_1}} \right)\) có đỉnh A, chiều cao AB, bán kính đáy \({r_1}\). Một hình nón \(\left( {{N_2}} \right)\) có … [Đọc thêm...] vềTrong không gian với hệ trục tọa độ \(Oxyz\), cho hai điểm \(A(1;2; – 3)\) và \(B( – 3;6; – 1)\). Hình nón \(\left( {{N_1}} \right)\) có đỉnh A, chiều cao AB, bán kính đáy \({r_1}\). Một hình nón \(\left( {{N_2}} \right)\) có đỉnhB và có đáy là một thiết diện nằm trên \(\left( \alpha \right)\) và song song với đáy của hình nón \(\left( {{N_1}} \right)\). Biết mặt phẳng \(\left( \alpha \right)\) có dạng \(2x + by + cz + d = 0\) sao cho thể tích khối nón \(({N_2})\)đạt giá trị lớn
nhất. Tính \(b + c + d\).
Trong không gian với hệ tọa độ \(Oxyz\), cho hai mặt cầu \(({S_1}):{x^2} + {y^2} + {z^2} – 2x + 4y – 2z + 2 = 0\) và \(({S_2}):{x^2} + {y^2} + {z^2} – 2x + 4y – 2z – 4 = 0\). Xét tứ diện \(ABCD\) có hai đỉnh \(A\), \(B\) nằm trên \(({S_1})\); hai đỉnh \(C\), \(D\) nằm trên \(({S_2})\). Thể tích khối tứ diện \(ABCD\) có giá trị lớn nhất bằng.
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian với hệ tọa độ \(Oxyz\), cho hai mặt cầu \(({S_1}):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z + 2 = 0\) và \(({S_2}):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 4 = 0\). Xét tứ diện \(ABCD\) có hai đỉnh \(A\), … [Đọc thêm...] về
Trong không gian với hệ tọa độ \(Oxyz\), cho hai mặt cầu \(({S_1}):{x^2} + {y^2} + {z^2} – 2x + 4y – 2z + 2 = 0\) và \(({S_2}):{x^2} + {y^2} + {z^2} – 2x + 4y – 2z – 4 = 0\). Xét tứ diện \(ABCD\) có hai đỉnh \(A\), \(B\) nằm trên \(({S_1})\); hai đỉnh \(C\), \(D\) nằm trên \(({S_2})\). Thể tích khối tứ diện \(ABCD\) có giá trị lớn nhất bằng.
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 3} \right)^2} = 15\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua điểm \(A\left( {0;\,0;\, – 4} \right)\), song song với đường thẳng \(\Delta :\,\left\{ \begin{array}{l}x = 4 + t\\y = 2\\z = 4 + 2t\end{array} \right.\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm của \(\left( S \right)\) và đáy là đường tròn \(\left( C \right)\), có thể tích lớn nhất. Biết rằng \(\left( \alpha \right):ax + by – z + c = 0\). Khi đó \(a + 2b + c\) bằng
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 3} \right)^2} = 15\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua điểm … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 3} \right)^2} = 15\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua điểm \(A\left( {0;\,0;\, – 4} \right)\), song song với đường thẳng \(\Delta :\,\left\{ \begin{array}{l}x = 4 + t\\y = 2\\z = 4 + 2t\end{array} \right.\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm của \(\left( S \right)\) và đáy là đường tròn \(\left( C \right)\), có thể tích lớn nhất. Biết rằng \(\left( \alpha \right):ax + by – z + c = 0\). Khi đó \(a + 2b + c\) bằng