• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Phuong trinh mat phang VDC

Cho hình lăng trụ đứng \(ABC.A’B’C’\)có \(AB = 4\),\(\widehat {ACB} = 150^\circ \). Ba điểm\(A,B,C\) thay đổi nhưng luôn thuộc mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} + 8x – 6y + 4z + 4 = 0\); ba điểm \(A’,B’,C’\) luôn thuộc \(\left( P \right):\)\(x + 2y + 2{\rm{z}} + 23 = 0\). Thể tích lớn nhất của tứ diện \(ABC’B’\) bằng

Ngày 07/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Cau 50 de toan 2021, Phuong trinh mat phang VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Cho hình lăng trụ đứng \(ABC.A'B'C'\)có \(AB = 4\),\(\widehat {ACB} = 150^\circ \). Ba điểm\(A,B,C\) thay đổi nhưng luôn thuộc mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} + 8x - 6y + 4z + 4 = 0\); ba điểm … [Đọc thêm...] về

Cho hình lăng trụ đứng \(ABC.A’B’C’\)có \(AB = 4\),\(\widehat {ACB} = 150^\circ \). Ba điểm\(A,B,C\) thay đổi nhưng luôn thuộc mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} + 8x – 6y + 4z + 4 = 0\); ba điểm \(A’,B’,C’\) luôn thuộc \(\left( P \right):\)\(x + 2y + 2{\rm{z}} + 23 = 0\). Thể tích lớn nhất của tứ diện \(ABC’B’\) bằng

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; – 2;1} \right),\,B\left( {3; – 4;5} \right)\). Một hình trụ \(\left( T \right)\) nội tiếp trong mặt cầu đường kính \(AB\) đồng thời nhận \(AB\) làm trục của hình trụ. Gọi \(M\) và \(N\)lần lượt là tâm các đường tròn đáy của \(\left( T \right)\) \(\left( M \right.\) nằm giữa\(\left. {A,N} \right)\). Khi thiết diện qua trục của \(\left( T \right)\) có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm \(M\) của \(\left( T \right)\) có dạng \(x + by + 2z + d = 0\). Giá trị của \(b – d\) bằng

Ngày 07/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Cau 50 de toan 2021, Phuong trinh mat phang VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; - 2;1} \right),\,B\left( {3; - 4;5} \right)\). Một hình trụ \(\left( T \right)\) nội tiếp trong mặt cầu đường kính \(AB\) đồng thời nhận \(AB\) làm trục của hình … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; – 2;1} \right),\,B\left( {3; – 4;5} \right)\). Một hình trụ \(\left( T \right)\) nội tiếp trong mặt cầu đường kính \(AB\) đồng thời nhận \(AB\) làm trục của hình trụ. Gọi \(M\) và \(N\)lần lượt là tâm các đường tròn đáy của \(\left( T \right)\) \(\left( M \right.\) nằm giữa\(\left. {A,N} \right)\). Khi thiết diện qua trục của \(\left( T \right)\) có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm \(M\) của \(\left( T \right)\) có dạng \(x + by + 2z + d = 0\). Giá trị của \(b – d\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {3; – 2;6} \right),{\rm{ }}B\left( {0;1;0} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\). Mặt phẳng \((P):ax + by + cz – 2 = 0\) đi qua A, Bvà cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính \(T = a + b + c\).

Ngày 07/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Cau 50 de toan 2021, Phuong trinh mat phang VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {3; - 2;6} \right),{\rm{ }}B\left( {0;1;0} \right)\) và mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - … [Đọc thêm...] về

Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {3; – 2;6} \right),{\rm{ }}B\left( {0;1;0} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\). Mặt phẳng \((P):ax + by + cz – 2 = 0\) đi qua A, Bvà cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính \(T = a + b + c\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 3
  • Trang 4
  • Trang 5

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.