Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\). A. \(P = 1\). B. \(P = 4\). C. \(P = 3\). D. \(P = 2\). Lời giải: Cách 1: Ta có \(I = \int\limits_0^{\frac{\pi … [Đọc thêm...] vềCho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\).
Trắc nghiệm Tích phân
Tính tích phân \(\int\limits_0^1 {\max \left\{ {{e^x},{e^{1 – 2x}}} \right\}} dx\).
Tính tích phân \(\int\limits_0^1 {\max \left\{ {{e^x},{e^{1 - 2x}}} \right\}} dx\). A. \(e - 1\). B. \(\frac{3}{2}\left( {e - \sqrt[3]{e}} \right)\). C. \(e - \sqrt[3]{e}\). D. \(\frac{1}{2}\left( {e - \frac{1}{e}} \right)\). Lời giải: Ta có: \({e^x} \ge {e^{1 - 2x}} \Leftrightarrow x \ge 1 - 2x \Leftrightarrow x \ge \frac{1}{3}\). Suy ra: \(\max \left\{ … [Đọc thêm...] vềTính tích phân \(\int\limits_0^1 {\max \left\{ {{e^x},{e^{1 – 2x}}} \right\}} dx\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 – 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a – 3b + 2c\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 - 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a - … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 – 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a – 3b + 2c\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) thỏa mãn \(f\left( {{x^3} + {x^2} + 2023} \right) = x + 1\) với mọi \(x \in \mathbb{R}.\) Tích phân \(\int\limits_{2023}^{2025} {f\left( x \right){\rm{d}}x} \) bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) thỏa mãn \(f\left( {{x^3} + {x^2} + 2023} \right) = x + 1\) với mọi \(x \in \mathbb{R}.\) Tích phân \(\int\limits_{2023}^{2025} {f\left( x \right){\rm{d}}x} \) bằng A. \(4050\). B. \(\frac{{24283}}{{12}}\). C. \(\frac{{41}}{{12}}\). D. \(\frac{3}{2}\). Lời giải: Khi \(x \ge 0\), ta có: … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) thỏa mãn \(f\left( {{x^3} + {x^2} + 2023} \right) = x + 1\) với mọi \(x \in \mathbb{R}.\) Tích phân \(\int\limits_{2023}^{2025} {f\left( x \right){\rm{d}}x} \) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \(F\left( x \right),G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 4 \right) + G\left( 4 \right) = 4\) và \(F\left( 0 \right) + G\left( 0 \right) = 1\). Khi đó \(\int\limits_0^2 f \left( {2x} \right){\rm{d}}x\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) . Gọi \(F\left( x \right),G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 4 \right) + G\left( 4 \right) = 4\) và \(F\left( 0 \right) + G\left( 0 \right) = 1\) . Khi đó \(\int\limits_0^2 f \left( {2x} \right){\rm{d}}x\) bằng B. 3. B. … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \(F\left( x \right),G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 4 \right) + G\left( 4 \right) = 4\) và \(F\left( 0 \right) + G\left( 0 \right) = 1\). Khi đó \(\int\limits_0^2 f \left( {2x} \right){\rm{d}}x\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( x \right) = f\left( {5 – x} \right),\forall x \in \mathbb{R}\).Biết \(\int\limits_2^3 {f\left( x \right)} dx = 2\). Tính \(I = \int\limits_2^3 {xf\left( x \right)} dx\).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( x \right) = f\left( {5 - x} \right),\forall x \in \mathbb{R}\).Biết \(\int\limits_2^3 {f\left( x \right)} dx = 2\). Tính \(I = \int\limits_2^3 {xf\left( x \right)} dx\). A. \(I = 15\). B. \(I = 5\). C. \(I = 20\). … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( x \right) = f\left( {5 – x} \right),\forall x \in \mathbb{R}\).Biết \(\int\limits_2^3 {f\left( x \right)} dx = 2\). Tính \(I = \int\limits_2^3 {xf\left( x \right)} dx\).
Cho \(f\left( x \right)\)có \(f\left( 0 \right) = 1\)và \(f\left( {\frac{\pi }{4}} \right) = \frac{\pi }{8}\) và \(f’\left( x \right) = \frac{{4m}}{\pi } + {\sin ^2}x\) (với \(m\) là tham số ). Tính \(\int\limits_0^\pi {f\left( x \right)} {\rm{dx}}\) ?
Cho \(f\left( x \right)\)có \(f\left( 0 \right) = 1\)và \(f\left( {\frac{\pi }{4}} \right) = \frac{\pi }{8}\) và \(f'\left( x \right) = \frac{{4m}}{\pi } + {\sin ^2}x\) (với \(m\) là tham số ). Tính \(\int\limits_0^\pi {f\left( x \right)} {\rm{dx}}\) ? A. \( - \frac{\pi }{2} + \frac{{{\pi ^2}}}{8}\). B. \( - 3 + \frac{\pi }{2}\). C. … [Đọc thêm...] vềCho \(f\left( x \right)\)có \(f\left( 0 \right) = 1\)và \(f\left( {\frac{\pi }{4}} \right) = \frac{\pi }{8}\) và \(f’\left( x \right) = \frac{{4m}}{\pi } + {\sin ^2}x\) (với \(m\) là tham số ). Tính \(\int\limits_0^\pi {f\left( x \right)} {\rm{dx}}\) ?
69. Gọi \(\left( H \right)\)là hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục \(Ox\)và hai đường thẳng \(x = 0,\) \(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục\(Ox\) là
Câu hỏi: 69. Gọi \(\left( H \right)\)là hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục \(Ox\)và hai đường thẳng \(x = 0,\) \(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục\(Ox\) là A. \(\frac{\pi }{2}\left( {{e^2} - 1} \right)\). B. \(\pi \left( {{e^2} + 1} \right)\). C. \(\frac{\pi }{2}\left( {{e^2} + 1} … [Đọc thêm...] về69. Gọi \(\left( H \right)\)là hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục \(Ox\)và hai đường thẳng \(x = 0,\) \(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục\(Ox\) là
92. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \frac{{x{{\rm{e}}^x}}}{{{{\left( {x + 1} \right)}^2}}}\) và \(F\left( 1 \right) = 1\). Hệ số tự do của \(F\left( x \right)\) thuộc khoảng
Câu hỏi: 92. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \frac{{x{{\rm{e}}^x}}}{{{{\left( {x + 1} \right)}^2}}}\) và \(F\left( 1 \right) = 1\). Hệ số tự do của \(F\left( x \right)\) thuộc khoảng A. \(\left( { - \frac{1}{2};\,0} \right)\). B. \(\left( {0;\,\frac{1}{2}} \right)\). C. \(\left( {\frac{1}{2};\,1} \right)\). D. \(\left( { - 1;\, - … [Đọc thêm...] về92. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \frac{{x{{\rm{e}}^x}}}{{{{\left( {x + 1} \right)}^2}}}\) và \(F\left( 1 \right) = 1\). Hệ số tự do của \(F\left( x \right)\) thuộc khoảng
4. Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x – 3}}{{{x^2} – 3x + 9}}\)là
Câu hỏi: 4. Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x - 3}}{{{x^2} - 3x + 9}}\)là A. \(\ln \left| {{x^2} - 3x + 9} \right| + C\). B. \(\frac{1}{{{x^2} - 3x + 9}} + C\). C. \( - \ln \left( {{x^2} - 2x + 9} \right) + C\). D. \(\ln \left( {{x^2} - 2x + 9} \right)\). Lời giải Xét \(\int {f\left( x \right){\rm{d}}x} = \int {\frac{{2x - … [Đọc thêm...] về4. Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x – 3}}{{{x^2} – 3x + 9}}\)là