Câu hỏi:
Trong không gian với hệ toạ độ \(Oxyz\)cho \(A\left( {1; - 2;0} \right);B\left( {1;0; - 1} \right);C\left( {0; - 1;2} \right)\)và \(D\left( {0;3;m} \right)\). Giá trị của \(m\)thuộc khoảng nào sau đây để bốn điểm trên đồng phẳng?
A. \(\left( { - 2; - 1} \right)\)
B. \(\left( { - 1;1} \right)\).
C. \(\left( {1;2} \right)\).
D. \(\left( {5;7} … [Đọc thêm...] về Trong không gian với hệ toạ độ \(Oxyz\)cho \(A\left( {1; – 2;0} \right);B\left( {1;0; – 1} \right);C\left( {0; – 1;2} \right)\)và \(D\left( {0;3;m} \right)\). Giá trị của \(m\)thuộc khoảng nào sau đây để bốn điểm trên đồng phẳng?
Trắc nghiệm Hình học OXYZ
Trong không gian \(Oxyz\). Có bao nhiêu giá trị nguyên của \(m \in \left( { – 25;15} \right)\) thì phương trình \({x^2} + {y^2} + {z^2} – 2x + 4y + 2(m + 1)z – 20m = 0\) là phương trình mặt cầu.
Câu hỏi:
Trong không gian \(Oxyz\). Có bao nhiêu giá trị nguyên của \(m \in \left( { - 25;15} \right)\) thì phương trình \({x^2} + {y^2} + {z^2} - 2x + 4y + 2(m + 1)z - 20m = 0\) là phương trình mặt cầu.
A. \(18\).
B. \(15\)
C. \(6\)
D. \(21\).
Lời giải
Phương trình trên là phương trình của mặt cầu \( \Leftrightarrow {1^2} + {\left( { - 2} \right)^2} + … [Đọc thêm...] về Trong không gian \(Oxyz\). Có bao nhiêu giá trị nguyên của \(m \in \left( { – 25;15} \right)\) thì phương trình \({x^2} + {y^2} + {z^2} – 2x + 4y + 2(m + 1)z – 20m = 0\) là phương trình mặt cầu.
Trong không gian \(Oxyz\), cho các điểm \(A\left( {2;3; – 1} \right)\), \(B\left( { – 3\,;\, – 1\,; – 4} \right)\), \(C\left( {4; – 1;5} \right)\), \(D\left( {2; – 2;1} \right)\). Tính thể tích \(V\) của tứ diện \(ABCD?\)
Câu hỏi:
Trong không gian \(Oxyz\), cho các điểm \(A\left( {2;3; - 1} \right)\), \(B\left( { - 3\,;\, - 1\,; - 4} \right)\), \(C\left( {4; - 1;5} \right)\), \(D\left( {2; - 2;1} \right)\). Tính thể tích \(V\) của tứ diện \(ABCD?\)
A. \(\frac{{64}}{3}\).
B. \(32\)
C. \(\frac{{32}}{3}\)
D. \(64\).
Lời giải
\(\overrightarrow {AB} = \left( { - 5; - 4; - 3} … [Đọc thêm...] về Trong không gian \(Oxyz\), cho các điểm \(A\left( {2;3; – 1} \right)\), \(B\left( { – 3\,;\, – 1\,; – 4} \right)\), \(C\left( {4; – 1;5} \right)\), \(D\left( {2; – 2;1} \right)\). Tính thể tích \(V\) của tứ diện \(ABCD?\)
Trong không gian với hệ trục \(Oxyz\)cho ba điểm \(A\left( {2\,;\,1\,;\,3} \right)\), \(B\left( {1\,;\, – 2\,;\,2} \right)\), \(C\left( {x\,;\,y\,;\,5} \right)\)thẳng hàng. Khi đó, tính \(x + y\).
Câu hỏi:
Trong không gian với hệ trục \(Oxyz\)cho ba điểm \(A\left( {2\,;\,1\,;\,3} \right)\), \(B\left( {1\,;\, - 2\,;\,2} \right)\), \(C\left( {x\,;\,y\,;\,5} \right)\)thẳng hàng. Khi đó, tính \(x + y\).
A. \(11\).
B. \(10\).
C. \(12\).
D. \(3\).
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 1\,;\, - 3\,;\, - 1} \right)\), \(\overrightarrow {AC} = … [Đọc thêm...] về Trong không gian với hệ trục \(Oxyz\)cho ba điểm \(A\left( {2\,;\,1\,;\,3} \right)\), \(B\left( {1\,;\, – 2\,;\,2} \right)\), \(C\left( {x\,;\,y\,;\,5} \right)\)thẳng hàng. Khi đó, tính \(x + y\).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho các vectơ \(\vec p = \left( {3; – 2;1} \right)\), \(\vec q = \left( { – 1;1; – 2} \right)\), \(\vec r = \left( {2;1; – 3} \right)\) và \(\vec c = \left( {11; – 6;5} \right)\). Biết \(c = x\overrightarrow p + y\overrightarrow q + z\overrightarrow r \) khi đó \(x + y + z\) bằng
Câu hỏi:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho các vectơ \(\vec p = \left( {3; - 2;1} \right)\), \(\vec q = \left( { - 1;1; - 2} \right)\), \(\vec r = \left( {2;1; - 3} \right)\) và \(\vec c = \left( {11; - 6;5} \right)\). Biết \(c = x\overrightarrow p + y\overrightarrow q + z\overrightarrow r \) khi đó \(x + y + z\) bằng
A. \(2\).
B. \(0\).
C. \( - … [Đọc thêm...] về Trong không gian với hệ trục tọa độ \(Oxyz\), cho các vectơ \(\vec p = \left( {3; – 2;1} \right)\), \(\vec q = \left( { – 1;1; – 2} \right)\), \(\vec r = \left( {2;1; – 3} \right)\) và \(\vec c = \left( {11; – 6;5} \right)\). Biết \(c = x\overrightarrow p + y\overrightarrow q + z\overrightarrow r \) khi đó \(x + y + z\) bằng
Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 2}}{{ – 1}} = \frac{z}{3}\) và mặt phẳng \(\left( P \right):2x – y – 2z + 1 = 0\). Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {3; – 1;2} \right)\), cắt đường thẳng \(d\) và song song với mặt phẳng \(\left( P \right)\) là
Câu hỏi:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{z}{3}\) và mặt phẳng \(\left( P \right):2x - y - 2z + 1 = 0\). Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {3; - 1;2} \right)\), cắt đường thẳng \(d\) và song song với mặt phẳng \(\left( P \right)\) là
A. \(\Delta … [Đọc thêm...] về Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 2}}{{ – 1}} = \frac{z}{3}\) và mặt phẳng \(\left( P \right):2x – y – 2z + 1 = 0\). Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {3; – 1;2} \right)\), cắt đường thẳng \(d\) và song song với mặt phẳng \(\left( P \right)\) là
Câu 49: Trong không gian \(Oxyz\), cho hai điểm \(B\left( {1\,;\,2\,;\,3} \right)\) và \(A\left( { – 1\,;\,2\,;\, – 1} \right)\). Viết phương trình mặt cầu đường kính \(AB\)
Câu hỏi:
Câu 49: Trong không gian \(Oxyz\), cho hai điểm \(B\left( {1\,;\,2\,;\,3} \right)\) và \(A\left( { - 1\,;\,2\,;\, - 1} \right)\). Viết phương trình mặt cầu đường kính \(AB\)
A. \({x^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = \sqrt 5 \).
B. \({x^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = \sqrt {20} \).
C. \({x^2} + … [Đọc thêm...] về Câu 49: Trong không gian \(Oxyz\), cho hai điểm \(B\left( {1\,;\,2\,;\,3} \right)\) và \(A\left( { – 1\,;\,2\,;\, – 1} \right)\). Viết phương trình mặt cầu đường kính \(AB\)
Trong không gian với hệ tọa độ \(Oxyz\), cho hình vuông \(ABCD\) trong đó \(A\left( {1;2;0} \right),B\left( {3;0;8} \right),\,\,C\left( { – 3; – 6;8} \right).\) Hai điểm \(M,{\rm{ }}N\) lần lượt nằm trên cạnh \(AB,{\rm{ }}BC\) thỏa mãn \(AM = BN = \frac{1}{3}BC\). Gọi \(I\left( {a;b;c} \right)\) là giao điểm của \(AN,{\rm{ }}DM\). Tính \(P = a + b + c\).
Câu hỏi:
Trong không gian với hệ tọa độ \(Oxyz\), cho hình vuông \(ABCD\) trong đó \(A\left( {1;2;0} \right),B\left( {3;0;8} \right),\,\,C\left( { - 3; - 6;8} \right).\) Hai điểm \(M,{\rm{ }}N\) lần lượt nằm trên cạnh \(AB,{\rm{ }}BC\) thỏa mãn \(AM = BN = \frac{1}{3}BC\). Gọi \(I\left( {a;b;c} \right)\) là giao điểm của \(AN,{\rm{ }}DM\). Tính \(P = a + b + c\).
A. … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho hình vuông \(ABCD\) trong đó \(A\left( {1;2;0} \right),B\left( {3;0;8} \right),\,\,C\left( { – 3; – 6;8} \right).\) Hai điểm \(M,{\rm{ }}N\) lần lượt nằm trên cạnh \(AB,{\rm{ }}BC\) thỏa mãn \(AM = BN = \frac{1}{3}BC\). Gọi \(I\left( {a;b;c} \right)\) là giao điểm của \(AN,{\rm{ }}DM\). Tính \(P = a + b + c\).
Câu 75: Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(A(8; – 8;8)\). Gọi \(M\) là điểm sao cho \(MA = 3MO\). Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( P \right):\,\,2x + 2y + z + 19 = 0\) đạt giá trị nhỏ nhất là
Câu hỏi:
Câu 75: Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(A(8; - 8;8)\). Gọi \(M\) là điểm sao cho \(MA = 3MO\). Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( P \right):\,\,2x + 2y + z + 19 = 0\) đạt giá trị nhỏ nhất là
A. \(6 + 3\sqrt 3 \).
B. \(3\sqrt 3 \).
C. \(6 - 3\sqrt 3 \).
D. \(6\).
Lời giải
Gọi \(M\left( {x;y;z} \right)\). Khi … [Đọc thêm...] về Câu 75: Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(A(8; – 8;8)\). Gọi \(M\) là điểm sao cho \(MA = 3MO\). Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( P \right):\,\,2x + 2y + z + 19 = 0\) đạt giá trị nhỏ nhất là
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = \,t\\y = 1 – 2t\\z = – 3t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và đường thẳng \({d_2}:\frac{x}{{ – 4}} = \frac{{y – 1}}{1} = \frac{{z + 1}}{5}\). Góc giữa hai đường thẳng \({d_1},\,\,{d_2}\) là
Câu hỏi:
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = \,t\\y = 1 - 2t\\z = - 3t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và đường thẳng \({d_2}:\frac{x}{{ - 4}} = \frac{{y - 1}}{1} = \frac{{z + 1}}{5}\). Góc giữa hai đường thẳng \({d_1},\,\,{d_2}\) là
A. \({30^0}\).
B. \({45^0}\).
C. … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = \,t\\y = 1 – 2t\\z = – 3t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và đường thẳng \({d_2}:\frac{x}{{ – 4}} = \frac{{y – 1}}{1} = \frac{{z + 1}}{5}\). Góc giữa hai đường thẳng \({d_1},\,\,{d_2}\) là