Tìm tâm, bán kính phương trình mặt cầu ========== Câu 13: Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\). Tâm của \(\left( S \right)\) có tọa độ là A. \(\left( { - 1\,;\, - 2\,;\, - 3} \right)\). B. \(\left( {1\,;\,2\,;\,3} \right)\). C. \(\left( { - 1\,;\,2\,;\, - … [Đọc thêm...] vềTìm tâm, bán kính phương trình mặt cầu
Trac nghiem mat cau
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\)là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.
Câu hỏi:
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; - 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\)là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.
Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { – 2; – 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P \right)\) cách điểm \(M\left( {7;10;1} \right)\) một khoảng lớn nhất.
Câu hỏi:
Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { - 2; - 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { – 2; – 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P \right)\) cách điểm \(M\left( {7;10;1} \right)\) một khoảng lớn nhất.
Cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z + 5} \right)^2} = 9\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = 2 + t\\z = – 1 – 3t\end{array} \right.\). Gọi \(A\) là một điểm di động trên mặt cầu \(\left( S \right)\). Biết rằng có 2 mặt phẳng \(\left( P \right)\), \(\left( {P’} \right)\) cùng chứa \(d\) và tiếp xúc với mặt \(\left( S \right)\) lần lượt tại \(B,\,\,C\). Diện tích tam giác \(ABC\) lớn nhất bằng
Câu hỏi:
Cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 9\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = 2 + t\\z = - 1 - 3t\end{array} \right.\). Gọi \(A\) là một điểm di động trên mặt cầu \(\left( S \right)\). Biết rằng có 2 mặt phẳng \(\left( P \right)\), \(\left( {P'} \right)\) cùng … [Đọc thêm...] về Cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z + 5} \right)^2} = 9\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = 2 + t\\z = – 1 – 3t\end{array} \right.\). Gọi \(A\) là một điểm di động trên mặt cầu \(\left( S \right)\). Biết rằng có 2 mặt phẳng \(\left( P \right)\), \(\left( {P’} \right)\) cùng chứa \(d\) và tiếp xúc với mặt \(\left( S \right)\) lần lượt tại \(B,\,\,C\). Diện tích tam giác \(ABC\) lớn nhất bằng
Câu 18: Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x + 4y + 1 = 0\)và đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 + t\\z = 2 – t\end{array} \right.\). Số điểm chung của đường thẳng d và mặt cầu \(\left( S \right)\) là
Câu hỏi:
Câu 18: Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0\)và đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 + t\\z = 2 - t\end{array} \right.\). Số điểm chung của đường thẳng d và mặt cầu \(\left( S \right)\) là
A. \(3.\)
B. \(2.\)
C. \(1.\)
D. \(0.\)
Lời giải
Giao điểm của đường thẳng \(d\)và mặt cầu … [Đọc thêm...] về Câu 18: Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x + 4y + 1 = 0\)và đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 + t\\z = 2 – t\end{array} \right.\). Số điểm chung của đường thẳng d và mặt cầu \(\left( S \right)\) là
Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} – 4x + 2y – 2z – 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\).
Câu hỏi:
Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} - 4x + 2y - 2z - 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\).
A. \(20\).
B. \(18\).
C. \(16\).
D. \(16\sqrt 2 \).
Lời … [Đọc thêm...] về Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} – 4x + 2y – 2z – 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {1\,; – \,2\,;\,3} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) cắt mặt phẳng \(\left( P \right)\) theo một đường tròn có chu vi \(12\pi \) có phương trình.
Câu hỏi:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {1\,; - \,2\,;\,3} \right)\) và mặt phẳng \(\left( P \right):2x - y + 2z + 5 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) cắt mặt phẳng \(\left( P \right)\) theo một đường tròn có chu vi \(12\pi \) có phương trình.
A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} … [Đọc thêm...] về Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {1\,; – \,2\,;\,3} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) cắt mặt phẳng \(\left( P \right)\) theo một đường tròn có chu vi \(12\pi \) có phương trình.
Trong không gian với hệ toạ độ \(Oxyz\)cho các phương trình, phương trình nào không phải là phương trình mặt cầu?
Câu hỏi:
Trong không gian với hệ toạ độ \(Oxyz\)cho các phương trình, phương trình nào không phải là phương trình mặt cầu?
A. \({x^2} + {y^2} + {z^2} + x - 2y + 4z - 3 = 0\).
B. \(2{x^2} + 2{y^2} + 2{z^2} - x - y - 3z = 0\).
C. \({x^2} + {y^2} + {z^2} - 2x + 4y - 4z + 11 = 0\).
D. \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0\).
Lời giải
Xét đáp án A … [Đọc thêm...] về Trong không gian với hệ toạ độ \(Oxyz\)cho các phương trình, phương trình nào không phải là phương trình mặt cầu?
Trong không gian với hệ toạ độ \(Oxyz\)cho phương trình của mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {z^2} + {\left( {y – 2} \right)^2} = 5\). Toạ độ tâm \(I\)của mặt cầu là:
Câu hỏi:
Trong không gian với hệ toạ độ \(Oxyz\)cho phương trình của mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {z^2} + {\left( {y - 2} \right)^2} = 5\). Toạ độ tâm \(I\)của mặt cầu là:
A. \(I\left( {1; - 2;0} \right)\).
B. \(I\left( {1;0; - 2} \right)\).
C. \(I\left( { - 1;2;0} \right)\).
D. \(I\left( { - 1;0;2} \right)\).
Lời giải
Ta có … [Đọc thêm...] về Trong không gian với hệ toạ độ \(Oxyz\)cho phương trình của mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {z^2} + {\left( {y – 2} \right)^2} = 5\). Toạ độ tâm \(I\)của mặt cầu là:
Trong không gian \(Oxyz\) cho mặt cầu \(\left( {{S_1}} \right)\): \({x^2} + {y^2} + {z^2} = 1\). Từ điểm \(S\) bất kỳ trên mặt cầu \(\left( {{S_1}} \right)\) kẻ ba đường thẳng cắt mặt cầu tại các điểm \(A\), \(B\), \(C\) sao cho \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Khi thể tích của khối chóp \(S.ABC\) lớn nhất, viết phương trình mặt cầu \(\left( {{S_2}} \right)\) đi qua tâm của \(\left( {{S_1}} \right)\)và tiếp xúc với \(\left( {ABC} \right)\).
Câu hỏi:
Trong không gian \(Oxyz\) cho mặt cầu \(\left( {{S_1}} \right)\): \({x^2} + {y^2} + {z^2} = 1\). Từ điểm \(S\) bất kỳ trên mặt cầu \(\left( {{S_1}} \right)\) kẻ ba đường thẳng cắt mặt cầu tại các điểm \(A\), \(B\), \(C\) sao cho \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Khi thể tích của khối chóp \(S.ABC\) lớn nhất, viết phương … [Đọc thêm...] về Trong không gian \(Oxyz\) cho mặt cầu \(\left( {{S_1}} \right)\): \({x^2} + {y^2} + {z^2} = 1\). Từ điểm \(S\) bất kỳ trên mặt cầu \(\left( {{S_1}} \right)\) kẻ ba đường thẳng cắt mặt cầu tại các điểm \(A\), \(B\), \(C\) sao cho \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Khi thể tích của khối chóp \(S.ABC\) lớn nhất, viết phương trình mặt cầu \(\left( {{S_2}} \right)\) đi qua tâm của \(\left( {{S_1}} \right)\)và tiếp xúc với \(\left( {ABC} \right)\).