Câu hỏi: Cắt hình nón \(\left( N \right)\) bởi mặt phẳng \(\left( \alpha \right)\) đi qua đỉnh và có khoảng cách đến tâm \(O\) của đường tròn đáy là \(\frac{{3a}}{2}\) ta được thiết diện là tam giác đều cạnh \(4a\). Thể tích của \(\left( N \right)\) bằng A. \(\frac{{7\pi {a^3}}}{3}\). B. \(\frac{{4\sqrt {13} \pi {a^3}}}{3}\). C. \(\frac{{8\sqrt {13} \pi … [Đọc thêm...] vềCắt hình nón \(\left( N \right)\) bởi mặt phẳng \(\left( \alpha \right)\) đi qua đỉnh và có khoảng cách đến tâm \(O\) của đường tròn đáy là \(\frac{{3a}}{2}\) ta được thiết diện là tam giác đều cạnh \(4a\). Thể tích của \(\left( N \right)\) bằng
Kết quả tìm kiếm cho: 0a
481. Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy, cạnh bên \(SC\) tạo với mặt phẳng \(\left( {SAB} \right)\) một góc \(30^\circ \). Thể tích của khối chóp đó bằng
Câu hỏi: 481. Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy, cạnh bên \(SC\) tạo với mặt phẳng \(\left( {SAB} \right)\) một góc \(30^\circ \). Thể tích của khối chóp đó bằng A. \(\frac{{{a^3}\sqrt 3 }}{3}\). B. \(\frac{{{a^3}\sqrt 2 }}{4}\). C. \(\frac{{{a^3}\sqrt 2 }}{2}\). D. \(\frac{{{a^3}\sqrt 2 … [Đọc thêm...] về481. Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy, cạnh bên \(SC\) tạo với mặt phẳng \(\left( {SAB} \right)\) một góc \(30^\circ \). Thể tích của khối chóp đó bằng
483. Cho hình chóp \(S.ABCD\) có đáy là hình vuông. Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\), mặt bên \((SBC)\) tạo với mặt phẳng \((SAC)\) một góc \(60^\circ \). Thể tích của khối chóp đó bằng
Câu hỏi: 483. Cho hình chóp \(S.ABCD\) có đáy là hình vuông. Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\), mặt bên \((SBC)\) tạo với mặt phẳng \((SAC)\) một góc \(60^\circ \). Thể tích của khối chóp đó bằng A. \(\frac{{{a^3}\sqrt 3 }}{3}\). B. \(\frac{{{a^3}\sqrt 3 }}{9}\). C. \(\frac{{{a^3}}}{9}\). D. \(\frac{{{a^3}\sqrt 2 }}{3}\). Lời … [Đọc thêm...] về483. Cho hình chóp \(S.ABCD\) có đáy là hình vuông. Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\), mặt bên \((SBC)\) tạo với mặt phẳng \((SAC)\) một góc \(60^\circ \). Thể tích của khối chóp đó bằng
504. Cho hàm số có đạo hàm liên tục trên và có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số \(y = f\left( {f\left( {\left| x \right|} \right)} \right)\) là
Câu hỏi: 504. Cho hàm số có đạo hàm liên tục trên và có bảng biến thiên như sau: Số điểm cực tiểu của hàm số \(y = f\left( {f\left( {\left| x \right|} \right)} \right)\) là A. \(5\). B. \(6\). C. \(3\). D. \(4\). Lời giải Đặt \(g\left( x \right) = f\left( {f(x)} \right)\). Khi đó \(g\left( {\left| x \right|} \right) = f\left( {f\left( {\left| x … [Đọc thêm...] về504. Cho hàm số có đạo hàm liên tục trên và có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số \(y = f\left( {f\left( {\left| x \right|} \right)} \right)\) là
505. Cho hàm số bậc ba \(y = f(x)\)có đồ thị là đường cong như hình bên dưới. Tìm số giá trĩ nguyên của tham số m thuộc đoạn \(\left[ { – 200;200} \right]\) để hàm số \(g(x) = \left| {{f^2}(x) + 8f(x) – m} \right|\) có đúng ba điểm cực trị.
Câu hỏi: 505. Cho hàm số bậc ba \(y = f(x)\)có đồ thị là đường cong như hình bên dưới. Tìm số giá trĩ nguyên của tham số m thuộc đoạn \(\left[ { - 200;200} \right]\) để hàm số \(g(x) = \left| {{f^2}(x) + 8f(x) - m} \right|\) có đúng ba điểm cực trị. A. \(184\). B. \(187\). C. \(186\). D. \(185\). Lời giải Dễ dàng tìm được \(f(x) = \frac{1}{4}{x^3} - … [Đọc thêm...] về505. Cho hàm số bậc ba \(y = f(x)\)có đồ thị là đường cong như hình bên dưới. Tìm số giá trĩ nguyên của tham số m thuộc đoạn \(\left[ { – 200;200} \right]\) để hàm số \(g(x) = \left| {{f^2}(x) + 8f(x) – m} \right|\) có đúng ba điểm cực trị.
Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất
Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất Lời giải Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), … [Đọc thêm...] vềĐề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất
Đề bài: $1/$CMR trong tam giác $ABC$ thì $A \ge 2B$ tương đương với điều kiện ${a^2} \ge b(b + c)$$2/$Cho tam giác $ABC$ có $A \ge 3B$. CMR khi đó ${(a – b)^2}(a + b) \ge b{c^2}$ Mệnh đề đảo có đúng không ?$3/$Cho tam giác $ABC$ có $A \ge B + 2C$. CMR khi đó $\cos C \le \frac{{a + b}}{{2a}}$
Đề bài: $1/$CMR trong tam giác $ABC$ thì $A \ge 2B$ tương đương với điều kiện ${a^2} \ge b(b + c)$$2/$Cho tam giác $ABC$ có $A \ge 3B$. CMR khi đó ${(a - b)^2}(a + b) \ge b{c^2}$ Mệnh đề đảo có đúng không ?$3/$Cho tam giác $ABC$ có $A \ge B + 2C$. CMR khi đó $\cos C \le \frac{{a + b}}{{2a}}$ Lời giải Đề bài: $1/$CMR trong tam giác $ABC$ thì $A \ge 2B$ … [Đọc thêm...] vềĐề bài: $1/$CMR trong tam giác $ABC$ thì $A \ge 2B$ tương đương với điều kiện ${a^2} \ge b(b + c)$$2/$Cho tam giác $ABC$ có $A \ge 3B$. CMR khi đó ${(a – b)^2}(a + b) \ge b{c^2}$ Mệnh đề đảo có đúng không ?$3/$Cho tam giác $ABC$ có $A \ge B + 2C$. CMR khi đó $\cos C \le \frac{{a + b}}{{2a}}$
26. Cho hình chóp \(S.ABCD\), \(ABCD\) là hình bình hành. \(G\) là trọng tâm của tam giác \(ABC\) và \(I\) là trung điểm của \(SG\). Mặt phẳng \(\left( {ICD} \right)\) chia khối chóp \(S.ABCD\) thành hai khối. Gọi \({V_1}\) là thể tích khối chứa điểm \(S\), \({V_2}\) là thể tích khối còn lại. Tính \(\frac{{{V_1}}}{{{V_2}}}\).
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 26. Cho hình chóp \(S.ABCD\), \(ABCD\) là hình bình hành. \(G\) là trọng tâm của tam giác \(ABC\) và \(I\) là trung điểm của \(SG\). Mặt phẳng \(\left( {ICD} \right)\) chia khối chóp \(S.ABCD\) thành hai khối. Gọi \({V_1}\) là thể tích khối chứa điểm … [Đọc thêm...] về26. Cho hình chóp \(S.ABCD\), \(ABCD\) là hình bình hành. \(G\) là trọng tâm của tam giác \(ABC\) và \(I\) là trung điểm của \(SG\). Mặt phẳng \(\left( {ICD} \right)\) chia khối chóp \(S.ABCD\) thành hai khối. Gọi \({V_1}\) là thể tích khối chứa điểm \(S\), \({V_2}\) là thể tích khối còn lại. Tính \(\frac{{{V_1}}}{{{V_2}}}\).
1. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Gọi \(H\) là trung điểm \(AB\), \(SH = a\) và \(SH \bot \left( {ABCD} \right)\). Tính \(\varphi \) là góc giữa \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\).
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 1. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Gọi \(H\) là trung điểm \(AB\), \(SH = a\) và \(SH \bot \left( {ABCD} \right)\). Tính \(\varphi \) là góc giữa \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\). Lời giải Cách … [Đọc thêm...] về1. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Gọi \(H\) là trung điểm \(AB\), \(SH = a\) và \(SH \bot \left( {ABCD} \right)\). Tính \(\varphi \) là góc giữa \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\).
8. Cho hàm số bậc bốn\(y = f\left( x \right)\)có đạo hàm liên tục trên \(\mathbb{R}\). Biết\(f(0) = 0\) và hàm số\(y = f’\left( x \right)\) có đồ thị như hình vẽ bên dưới
DẠNG TOÁN CỰC TRỊ HÀM GIÁ TRỊ TUYỆT ĐỐI – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: 8. Cho hàm số bậc bốn\(y = f\left( x \right)\)có đạo hàm liên tục trên \(\mathbb{R}\). Biết\(f(0) = 0\) và hàm số\(y = f'\left( x \right)\) có đồ thị như hình vẽ bên dưới Tìm số điểm cực trị của hàm số \(g\left( x \right) = \left| {f\left( {{x^2}} \right) - … [Đọc thêm...] về8. Cho hàm số bậc bốn\(y = f\left( x \right)\)có đạo hàm liên tục trên \(\mathbb{R}\). Biết\(f(0) = 0\) và hàm số\(y = f’\left( x \right)\) có đồ thị như hình vẽ bên dưới