• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất

Bat dang thuc

Lời giải

Đề bài:
Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất
Lời giải


a) Ta có:     $\overrightarrow {OC’}  = \overrightarrow {OA}  + \overrightarrow {AC}  + \overrightarrow {CC’}  = \overrightarrow {OA}  + \overrightarrow {AC}  + \overrightarrow {BB’} $
Vậy $C'(0;1;b)$
Ta có:    $\overrightarrow{B’C}=(b;1;-b) $ và $\overrightarrow{AC’}=(-a;1;b) $
$\Rightarrow \overrightarrow{B’C}\wedge \overrightarrow{AC’}=(2b;0;2a)  $
Mà $\overrightarrow{AC}=(-a;1;0) $
vậy $d = \frac{{|(\overrightarrow {B’C}  \wedge \overrightarrow {AC’} )\overrightarrow {AC} |}}{{|\overrightarrow {B’C}  \wedge \overrightarrow {AC’} |}} = \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}$

b) Theo bất đẳng thức Cosi: $a^2+b^2\geq  2ab$ và $a+b\geq  2\sqrt{ab} $
nên $d=\frac{ab}{\sqrt{a^2+b^2} } \leq  \frac{ab}{\sqrt{2ab} }=\frac{1}{\sqrt{2} }\sqrt{ab}   \leq  \frac{a+b}{2\sqrt{2} } =\frac{4}{2\sqrt{2} }=\sqrt{2}  $
$\Rightarrow  d_{max}=\sqrt{2}\Leftrightarrow  \left\{ \begin{array}{l} a,b>0\\ a=b\\a+b=4 \end{array} \right.  \Leftrightarrow  a=b=2$

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}
  2. Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$.
  3. Đề bài: Xác định dạng của tam giác nếu   $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2     (1)$
  4. Đề bài: Chứng minh với mọi $a  ,b$  mà  $a+b=1$  thì  $\frac{1}{a+1}+\frac{1}{b+1} \geq \frac{4}{3}.   $
  5. Đề bài: Chứng minh rằng với mọi số thực không âm $a,b$ ta có:    $16ab(a-b)^2\leq (a+b)^4$
  6. Đề bài: Cho các số thực $x,y,z>0$. Chứng minh rằng:       $16xyz(x+y+z)\leq 3\sqrt[3]{(x+y)^4(y+z)^4(z+x)^4}$.
  7. Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a^{2}}{b^{5}}+\frac{b^{2}}{c^{5}}+\frac{c^{2}}{d^{5}}+\frac{d^{2}}{a^{5}}\geq \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{d^{3}}$
  8. Đề bài: Cho $x,y,z>0$ và $x^2+y^2+z^2=1$.Chứng minh $\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z}{y^2+x^2}\geq \frac{3\sqrt{3}}{2}$.
  9. Đề bài: Cho $x\geq 2, y\geq 3, z\geq 4$. Tìm giá trị lớn nhất của biểu thức:                      $P=\frac{xy\sqrt{z-4}+yz\sqrt{x-2}+zx\sqrt{y-3}}{xyz}$.
  10. Đề bài: Hãy xác định dạng của tam giác $ABC$ để:  $\cot A + \cot B+\cot C$ đạt giá trị nhỏ nhất.
  11. Đề bài: Chứng minh rằng: $(\frac{2^{n+1}-1}{n^{2}+2n+1})^{n+1}\geq \frac{C^{0}_{n}C^{1}_{n}C^{2}_{n}…C^{n}_{n}}{(n+1)!},\forall n\in N^{*}$
  12. Đề bài: Cho các số dương $a,b,c,d$ chứng minh rằng:  $\sqrt{ab}+\sqrt{cd}\leq \sqrt{(a+c)(b+d)}$
  13. Đề bài: Chứng minh rằng: $(1-x)(1-y)(x+y)\leq \frac{8}{27}$.Trong đó $x,y$ là các số thực thỏa mãn $0\leq x,y\leq 1$.
  14. Đề bài: Với $a, b, c$ là ba số thực dương thỏa mãn đẳng thức \(ab + bc + ca = abc\), chứng minh rằng                                        \(\frac{{\sqrt {{b^2} + 2{a^2}} }}{{ab}} + \frac{{\sqrt {{c^2} + 2{b^2}} }}{{bc}} + \frac{{\sqrt {{a^2} + 2{c^2}} }}{{ca}} \ge \sqrt 3\)
  15. Đề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.