• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$

Bat dang thuc

Lời giải

Đề bài:
$1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$
Lời giải

adsense

$1. a.$ $\overrightarrow {BD} =\overrightarrow {BA} +\overrightarrow {AD} =-\overrightarrow {AB} +\overrightarrow {AD} =\overrightarrow {b} -\overrightarrow {a} $
$b.$  Kẻ $CE//AB$ (hình vẽ). Ta có $ED=EC.\sqrt{3} =AB.\sqrt{3} =|\overrightarrow {a} |.\sqrt{3} $
$AE=AD-ED=|\overrightarrow {b} |-|\overrightarrow {a} |.\sqrt{3} $
$\Rightarrow  \overrightarrow {BC} =\overrightarrow {AE}=\frac{|\overrightarrow {b} |-|\overrightarrow {a} |\sqrt{3} }{|\overrightarrow {b} |} .\overrightarrow {b}  $
$c.$ $\overrightarrow {CD} =\overrightarrow {CB} +\overrightarrow {BA}+\overrightarrow {AD}  =\frac{|\overrightarrow {a} |.\sqrt{3}-|\overrightarrow {b} | }{|\overrightarrow {b} |} .\overrightarrow {b} -\overrightarrow {a} +\overrightarrow {b} $
$\Rightarrow  \overrightarrow {CD} =\frac{|\overrightarrow {a} |\sqrt{3} }{|\overrightarrow {b} |} .\overrightarrow {b} -\overrightarrow {a} $
$d.$ $\overrightarrow {AC} =\overrightarrow {AB} +\overrightarrow {BC} =a\frac{|\overrightarrow {b} |-|\overrightarrow {a} |\sqrt{3} }{|\overrightarrow {b} |} .\overrightarrow {b} $
$2.$ Theo Côsi $tanx+cotx\geq  2,\forall  x\in (0,\frac{\pi}{2} )$
đẳng thức $\Leftrightarrow  tanx=cotx=1$
$cosx +sinx +\frac{1}{sinx } +\frac{1}{cosx } \geq  1,\forall  x\in (0,\frac{\pi}{2} )$, đẳng thức
$\Leftrightarrow  cosx =sinx =\frac{1}{sinx }=\frac{1}{cosx }=1\Leftrightarrow  cosx =sinx =1  $ (không xảy ra)
Do đó
$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx }>6,\forall  x\in(0,\frac{\pi}{2} )  $

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: Cho $x,y,z$ là ba số dương và $\frac{1}{3^x}+\frac{1}{3^y}+\frac{1}{3^z}=1$. Chứng minh rằng:$\frac{9^x}{3^x+3^{y+z}}+\frac{9^y}{3^y+3^{x+z}}+\frac{9^z}{3^z+3^{x+y}}\geq \frac{3^x+3^y+3^z}{4}$.
  2. Đề bài: Cho \(a>0, b>0\). Chứng minh rằng: \((1+\frac{a}{b})^{m}+(1+\frac{b}{a})^{m}\geq 2^{m+1}\) với \(m\in Z^+\).
  3. Đề bài: Tìm trên $D=[-\frac{1}{2};\frac{1}{3} ]$ giá trị lớn nhất  của $Q=(2x+1)^5(1-3x)^3$
  4. Đề bài: Cho $a,b,c$ dương. Chứng minh: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}$
  5. Đề bài: Chứng minh rằng với mọi số thực dương $a>b$, ta có:    $a+\frac{1}{b(a-b)}\geq 3$
  6. Đề bài: Cho $abc\neq 0$.Chứng minh rằng:$(\frac{a}{b})^{2}+(\frac{b}{c})^{2}+(\frac{c}{a})^{2} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}$
  7. Đề bài: Cho $a,b,c\geq 0$ và $a+b+c=1$Chứng minh rằng: $a+2b+c\geq 4\left ( 1-a \right )\left ( 1-b \right )\left ( 1-c \right) $
  8. Đề bài: Cho các số thực $a \geq 0, b \geq 0, c \geq 2$ thỏa mãn và $ab+2(a+b) \geq 5     (1)$Chứng minh $Q=a^4+4a^2+6b^2+\frac{91}{32}c^2+\frac{32}{27}c+\frac{27}{c^4} \geq \frac{11419}{432}$   
  9. Đề bài: Tìm giá trị lớn nhất của:  \(f(x,y)=(2x-x^{2})(y-2y^{2}); 0\leq x\leq 2; 0\leq y\leq \frac{1}{2}\)
  10. Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$
  11. Đề bài: Cho $a,b,c$ dương chứng minh: $(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})\geq \frac{9}{2}$
  12. Đề bài: Cho các số thực $a,b$ không âm, chứng minh rằng:    $a^3+2b^3\geq 3ab^2$
  13. Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$
  14. Đề bài: Cho $a,b,c\geq 0$ và $a+b+c=1$.Chứng minh rằng: $p=abc\left ( a+b \right )\left ( b+c \right )\left ( c+a \right )\leq \frac{8}{729}$
  15. Đề bài: Cho các số thực dương $x,y,z$ thỏa mãn $xy+yz+zx =\frac{9}{4}                  (1)$Tìm $\min Q$, với $Q=x^2+14y^2+10z^2-4\sqrt{2y}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.