• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Chứng minh bất đẳng thức:$1,71

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh bất đẳng thức:$1,71 Lời giải Đề bài: Chứng minh bất đẳng thức:$1,71 Lời giải Đặt $S_n=1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}$. Với $ n=5$ thì $S_5=\frac{143}{60}$ nên $1,71Ngoài ra $S_n\geq S_5=\frac{143}{60}>1,71$.Vậy, bất đẳng thức thứ nhất đã được chứng minh.Bây giờ … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:$1,71

Đề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $ Lời giải Đề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $ Lời giải … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $

Đề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: $C\sqrt{3} \leq \sqrt[3]{C_1C_2C_3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: $C\sqrt{3} \leq \sqrt[3]{C_1C_2C_3}$ Lời giải Đề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: … [Đọc thêm...] vềĐề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: $C\sqrt{3} \leq \sqrt[3]{C_1C_2C_3}$

Đề bài: Chứng minh:       Nếu   $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Chứng minh:       Nếu   $0 Lời giải Đề bài: Chứng minh:       Nếu   $0 Lời giải Ta có:   $\sin x-\cos x=\sqrt{2}\left (\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x \right )$                                       $=\sqrt{2}(\sin x.\cos\frac{\pi}{4}-\cos … [Đọc thêm...] vềĐề bài: Chứng minh:       Nếu   $0

Đề bài: Có tồn tại $x \in R$ sao cho: $\frac{1}{3}\leq \frac{\tan3x}{\tan x}\leq 3$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Có tồn tại $x \in R$ sao cho: $\frac{1}{3}\leq \frac{\tan3x}{\tan x}\leq 3$ Lời giải Đề bài: Có tồn tại $x \in R$ sao cho: $\frac{1}{3}\leq \frac{\tan3x}{\tan x}\leq 3$ Lời giải Giả sử tồn tại $x \in R$ để:$\frac{1}{3}\leq \frac{\tan3x}{\tan x}\leq 3(1)$ĐK: $\begin{cases} tanx\neq 0 \\ … [Đọc thêm...] vềĐề bài: Có tồn tại $x \in R$ sao cho: $\frac{1}{3}\leq \frac{\tan3x}{\tan x}\leq 3$

Đề bài: Cho $a \le 6,b \le  – 8,c \le 3$. Chứng minh rằng với mọi $x \ge 1$ ta đều đó $x^4-ax^2-bx\geq c$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $a \le 6,b \le  - 8,c \le 3$. Chứng minh rằng với mọi $x \ge 1$ ta đều đó $x^4-ax^2-bx\geq c$ Lời giải Với $x \ge 1$ thì :${x^4} - {\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{  -  bx  -  c  }} \ge {\rm{ }}{{\rm{x}}^{{\rm{4 }}}} - 6{{\rm{x}}^{\rm{2}}} + 8{\rm{x  -  3  =  (x  -  1}}{{\rm{)}}^{\rm{3}}}{\rm{ ( x  + 3) }} \ge {\rm{0}}$  (ĐPCM) ========= Chuyên … [Đọc thêm...] vềĐề bài: Cho $a \le 6,b \le  – 8,c \le 3$. Chứng minh rằng với mọi $x \ge 1$ ta đều đó $x^4-ax^2-bx\geq c$

Đề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\). Lời giải Ta có: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\)\(\Leftrightarrow \frac{a^{3}}{a}+\frac{b^{3}}{a}+\frac{a^{3}}{b}+\frac{b^{3}}{b}\geq a^{2}+2ab+b^{2}\)\(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\).

Đề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}<\frac{a+c}{b+d}\leq \frac{c}{d}              d) m>n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $ Lời giải HD: dùng định nghĩaThêm lời giải chi tiết ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}<\frac{a+c}{b+d}\leq \frac{c}{d}              d) m>n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $

Đề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$. Lời giải Đề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$. Lời giải Cần lời giải chi tiết. ========= Chuyên mục: Bất đẳng … [Đọc thêm...] vềĐề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$.

Đề bài: Cho $x,y,z>0$ và $x+y+z=\frac{3}{4}$.Chứng minh rằng: $\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\leq 3$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $x,y,z>0$ và $x+y+z=\frac{3}{4}$.Chứng minh rằng: $\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\leq 3$. Lời giải Đề bài: Cho $x,y,z>0$ và $x+y+z=\frac{3}{4}$.Chứng minh rằng: $\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\leq 3$. Lời giải Bằng cách thêm bớt hằng số và theo bất đẳng … [Đọc thêm...] vềĐề bài: Cho $x,y,z>0$ và $x+y+z=\frac{3}{4}$.Chứng minh rằng: $\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\leq 3$.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 4
  • Trang 5
  • Trang 6
  • Trang 7
  • Trang 8
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.