• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Xét: $f(t)=\ln t,t \in [b,a]$Do $f(t)$ liên tục trên $[b, a]$ và có đạo hàm trên $(b, a)$, áp dụng định lý Lagrange: $\exists c\in [b,a]$$f(a)-f(b)=f'(c)(a-b)$$\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Đề bài: Cho $n$ số thực $a_{1}, a_2, …,a_n$ thuộc đoạn $[-1;1]$ thoả mãn:  $a_{1}^3+ a_2^3+…a_n^3=0$.Chứng minh rằng $a_{1}+ a_2+…a_n\leq \frac{n}{3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $n$ số thực $a_{1}, a_2, ...,a_n$ thuộc đoạn $[-1;1]$ thoả mãn:  $a_{1}^3+ a_2^3+...a_n^3=0$.Chứng minh rằng $a_{1}+ a_2+...a_n\leq \frac{n}{3}$ Lời giải Đề bài: Cho $n$ số thực $a_{1}, a_2, ...,a_n$ thuộc đoạn $[-1;1]$ thoả mãn:  $a_{1}^3+ a_2^3+...a_n^3=0$.Chứng minh rằng $a_{1}+ a_2+...a_n\leq \frac{n}{3}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $n$ số thực $a_{1}, a_2, …,a_n$ thuộc đoạn $[-1;1]$ thoả mãn:  $a_{1}^3+ a_2^3+…a_n^3=0$.Chứng minh rằng $a_{1}+ a_2+…a_n\leq \frac{n}{3}$

Đề bài: Cho $a,b,c $ dương và có $abc=1$. Chứng minh:$\frac{ab}{a^{5}+b^{5}+ab}+\frac{bc}{b^{5}+c^{5}+bc}+\frac{ca}{c^{5}+a^{5}+ca}\leq 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $a,b,c $ dương và có $abc=1$. Chứng minh:$\frac{ab}{a^{5}+b^{5}+ab}+\frac{bc}{b^{5}+c^{5}+bc}+\frac{ca}{c^{5}+a^{5}+ca}\leq 1$ Lời giải Đề bài: Cho $a,b,c $ dương và có $abc=1$. Chứng minh:$\frac{ab}{a^{5}+b^{5}+ab}+\frac{bc}{b^{5}+c^{5}+bc}+\frac{ca}{c^{5}+a^{5}+ca}\leq 1$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c $ dương và có $abc=1$. Chứng minh:$\frac{ab}{a^{5}+b^{5}+ab}+\frac{bc}{b^{5}+c^{5}+bc}+\frac{ca}{c^{5}+a^{5}+ca}\leq 1$

Đề bài: Chứng minh rằng:$\frac{1}{2}.\frac{3}{4}…\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}},\forall n\in N^{*}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng:$\frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}},\forall n\in N^{*}$ Lời giải Đề bài: Chứng minh rằng:$\frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}},\forall n\in N^{*}$ Lời giải $\forall k\in N^{*}$,ta có:$12k^{2}+(k-1)\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$\frac{1}{2}.\frac{3}{4}…\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}},\forall n\in N^{*}$

Đề bài: Cho  $ \begin{cases}\alpha_1,\alpha_2, … , \alpha_n \in (0;\frac{\pi}{2}) ,  n>3\\\sum\limits_{i=1}^n=\pi \end{cases}$Chứng minh rằng:    $(n-\sum\limits_{i=1}^n {\tan^2 \alpha_i} )/(n+ \sum\limits_{i=1}^n {\tan^2 \alpha_i} )\leq \cos \frac{2\pi}{n}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho  $ \begin{cases}\alpha_1,\alpha_2, ... , \alpha_n \in (0;\frac{\pi}{2}) ,  n>3\\\sum\limits_{i=1}^n=\pi \end{cases}$Chứng minh rằng:    $(n-\sum\limits_{i=1}^n {\tan^2 \alpha_i} )/(n+ \sum\limits_{i=1}^n {\tan^2 \alpha_i} )\leq \cos \frac{2\pi}{n}$ Lời giải Đề bài: Cho  $ \begin{cases}\alpha_1,\alpha_2, ... , \alpha_n \in (0;\frac{\pi}{2}) ,  … [Đọc thêm...] vềĐề bài: Cho  $ \begin{cases}\alpha_1,\alpha_2, … , \alpha_n \in (0;\frac{\pi}{2}) ,  n>3\\\sum\limits_{i=1}^n=\pi \end{cases}$Chứng minh rằng:    $(n-\sum\limits_{i=1}^n {\tan^2 \alpha_i} )/(n+ \sum\limits_{i=1}^n {\tan^2 \alpha_i} )\leq \cos \frac{2\pi}{n}$

Đề bài: Chứng minh rằng:$\sqrt{a}\leq \underbrace { \sqrt{a+\sqrt{a+…+\sqrt{a}}}}_{n}< \frac{1+\sqrt{4a+1}}{2}$,với $\forall a \geq 0,n \in Z, n\geq 2$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng:$\sqrt{a}\leq \underbrace { \sqrt{a+\sqrt{a+...+\sqrt{a}}}}_{n}< \frac{1+\sqrt{4a+1}}{2}$,với $\forall a \geq 0,n \in Z, n\geq 2$ Lời giải Đề bài: Chứng minh rằng:$\sqrt{a}\leq \underbrace { \sqrt{a+\sqrt{a+...+\sqrt{a}}}}_{n}< \frac{1+\sqrt{4a+1}}{2}$,với $\forall a \geq 0,n \in Z, n\geq 2$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$\sqrt{a}\leq \underbrace { \sqrt{a+\sqrt{a+…+\sqrt{a}}}}_{n}< \frac{1+\sqrt{4a+1}}{2}$,với $\forall a \geq 0,n \in Z, n\geq 2$

Đề bài: Cho các số thực $a,b,c,d$ thoả mãn $a^2+b^2=1, c^2+d^2=1$. Chứng minh rằng:       $|a(c-d)+b(c+d)|\leq \sqrt{2}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho các số thực $a,b,c,d$ thoả mãn $a^2+b^2=1, c^2+d^2=1$. Chứng minh rằng:       $|a(c-d)+b(c+d)|\leq \sqrt{2}$. Lời giải Đề bài: Cho các số thực $a,b,c,d$ thoả mãn $a^2+b^2=1, c^2+d^2=1$. Chứng minh rằng:       $|a(c-d)+b(c+d)|\leq \sqrt{2}$. Lời giải Từ giả … [Đọc thêm...] vềĐề bài: Cho các số thực $a,b,c,d$ thoả mãn $a^2+b^2=1, c^2+d^2=1$. Chứng minh rằng:       $|a(c-d)+b(c+d)|\leq \sqrt{2}$.

Đề bài: Cho: $\begin{cases} 0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho: $\begin{cases} 0 Lời giải Đề bài: Cho: $\begin{cases} 0 Lời giải Do $nx>-1, 0eo BĐT Bernoulli:$\left ( 1+nx \right )^{\frac{1}{n}}$\Rightarrow \left ( 1+nx \right )^{\frac{1}{n}} ========= Chuyên mục: Các dạng bất đẳng thức khác … [Đọc thêm...] vềĐề bài: Cho: $\begin{cases} 0

Đề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $ 

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $  Lời giải Đề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $  Lời giải Vì a, b, c là số đo 3 cạnh của một tam giác, … [Đọc thêm...] vềĐề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $ 

Đề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p - a}  + \sqrt {p - b}  + \sqrt {p - c}  \le \sqrt {3p} \)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p - a}  + \sqrt {p - b}  + \sqrt {p - c}  \le \sqrt {3p} \) Lời giải Đề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p … [Đọc thêm...] vềĐề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p - a}  + \sqrt {p - b}  + \sqrt {p - c}  \le \sqrt {3p} \)

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 6
  • Trang 7
  • Trang 8
  • Trang 9
  • Trang 10
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.