• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Xét: $f(t)=\ln t,t \in [b,a]$Do $f(t)$ liên tục trên $[b, a]$ và có đạo hàm trên $(b, a)$, áp dụng định lý Lagrange: $\exists c\in [b,a]$$f(a)-f(b)=f'(c)(a-b)$$\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Xét: $f(t)=\ln t,t \in [b,a]$Do $f(t)$ liên tục trên $[b, a]$ và có đạo hàm trên $(b, a)$, áp dụng định lý Lagrange: $\exists c\in [b,a]$$f(a)-f(b)=f'(c)(a-b)$$\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$ Lời giải Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$

Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$ Lời giải Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$

Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$. Lời giải Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$. Lời giải Ta có: $y=1-x$, từ đó … [Đọc thêm...] vềĐề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.

Đề bài: Cho $\begin{cases}0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $\begin{cases}0 Lời giải Đề bài: Cho $\begin{cases}0 Lời giải $f(x)=x^{2}-(a+c)x+ac=0$ có $2$ nghiệm $a,c$Mà: $a \leq b\leq c \Rightarrow f(b) \leq 0$$\Leftrightarrow  b^{2}-(a+c)b+ac\leq 0$$\Leftrightarrow  b+\frac{ac}{b} \leq a+c$$\Leftrightarrow  yb+ac\frac{y}{b} \leq … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}0

Đề bài: Cho $\begin{cases}0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $\begin{cases}0 Lời giải Đề bài: Cho $\begin{cases}0 Lời giải $f(x)=x^{2}-(a+c)x+ac=0$ có $2$ nghiệm $a,c$Mà: $a \leq b\leq c \Rightarrow f(b) \leq 0$$\Leftrightarrow  b^{2}-(a+c)b+ac\leq 0$$\Leftrightarrow  b+\frac{ac}{b} \leq a+c$$\Leftrightarrow  yb+ac\frac{y}{b} \leq … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}0

Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$. Lời giải Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$. Lời giải Do $x\geq -2$ nên hiển nhiên ta có: $f(x)\geq -2$ với $\forall x\in R$.Mặt khác … [Đọc thêm...] vềĐề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.

Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$. Lời giải Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$. Lời giải Ta có: $y=1-x$, từ đó … [Đọc thêm...] vềĐề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.

Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$. Lời giải Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$. Lời giải Ta có: $18+3x-x^2=(3+x)(6-x)$Điều … [Đọc thêm...] vềĐề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.

  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.