Đề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$ Lời giải Đề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$
Ứng dụng hàm số để chứng minh Bất đẳng thức
Đề bài: Cho $x>y>1$.Chứng minh rằng:$5y^{4}(x-y)
Đề bài: Cho $x>y>1$.Chứng minh rằng:$5y^{4}(x-y) Lời giải Đề bài: Cho $x>y>1$.Chứng minh rằng:$5y^{4}(x-y) Lời giải Xét: $f(t)=t^{5},t \in [y,x]$Do $f(t)$ liên tục trên $[y, x]$ và có đạo hàm trên $(y, x)$, áp dụng định lý Lagrange: $\exists c\in … [Đọc thêm...] vềĐề bài: Cho $x>y>1$.Chứng minh rằng:$5y^{4}(x-y)
Đề bài: Chứng minh rằng:$\frac{x}{1+x}
Đề bài: Chứng minh rằng:$\frac{x}{1+x} Lời giải Đề bài: Chứng minh rằng:$\frac{x}{1+x} Lời giải Xét: $f(t)=\ln t,t \in [1,1+x](x>0)$Do $f(t)$ liên tục trên $[1, 1+x]$ và có đạo hàm trên $(1, 1+x)$,áp dụng định lý Lagrange: $\exists c\in (1,1+x)$:$f(1+x)-f(1)=f'(c)(1+x-1)\Rightarrow \ln … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$\frac{x}{1+x}