• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Xét: $f(t)=\ln t,t \in [b,a]$Do $f(t)$ liên tục trên $[b, a]$ và có đạo hàm trên $(b, a)$, áp dụng định lý Lagrange: $\exists c\in [b,a]$$f(a)-f(b)=f'(c)(a-b)$$\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a} Lời giải Xét: $f(t)=\ln t,t \in [b,a]$Do $f(t)$ liên tục trên $[b, a]$ và có đạo hàm trên $(b, a)$, áp dụng định lý Lagrange: $\exists c\in [b,a]$$f(a)-f(b)=f'(c)(a-b)$$\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}

Đề bài: Cho $n$ số thực không âm $x_1, x_2, …, x_n$ thỏa mãn điều kiện: $x_1+x_2+…+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)…(1-x_n)\geq  \frac{1}{2} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $n$ số thực không âm $x_1, x_2, ..., x_n$ thỏa mãn điều kiện: $x_1+x_2+...+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)...(1-x_n)\geq  \frac{1}{2} $ Lời giải Đề bài: Cho $n$ số thực không âm $x_1, x_2, ..., x_n$ thỏa mãn điều kiện: $x_1+x_2+...+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)...(1-x_n)\geq  \frac{1}{2} $ Lời giải … [Đọc thêm...] vềĐề bài: Cho $n$ số thực không âm $x_1, x_2, …, x_n$ thỏa mãn điều kiện: $x_1+x_2+…+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)…(1-x_n)\geq  \frac{1}{2} $

Đề bài: Chứng minh rằng với mọi số nguyên $n \ge 3$ ta đều có:        ${n^{n + 1}} > {(n + 1)^n}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng với mọi số nguyên $n \ge 3$ ta đều có:        ${n^{n + 1}} > {(n + 1)^n}$ Lời giải Đề bài: Chứng minh rằng với mọi số nguyên $n \ge 3$ ta đều có:        ${n^{n + 1}} > {(n + 1)^n}$ Lời giải Có $3^4=81,4^3=64\Rightarrow 3^4>4^3\Rightarrow $ BĐT cần chứng minh đúng với … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số nguyên $n \ge 3$ ta đều có:        ${n^{n + 1}} > {(n + 1)^n}$

Đề bài: Cho $x,y,z$ dương và $x(x+y+z)=3yz$. Chứng minh:$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x)\leq 5 (y+z)^{3} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $x,y,z$ dương và $x(x+y+z)=3yz$. Chứng minh:$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x)\leq 5 (y+z)^{3} $ Lời giải Đề bài: Cho $x,y,z$ dương và $x(x+y+z)=3yz$. Chứng minh:$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x)\leq 5 (y+z)^{3} $ Lời giải  Đặt $a=x+y , c=y+z , b=z+x$ thì … [Đọc thêm...] vềĐề bài: Cho $x,y,z$ dương và $x(x+y+z)=3yz$. Chứng minh:$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x)\leq 5 (y+z)^{3} $

Đề bài:    Cho $b>c>d$. Chứng minh rằng với mọi $a$ ta luôn có:        $(a+b+c+d)^2>8(ac+bd)          (1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài:    Cho $b>c>d$. Chứng minh rằng với mọi $a$ ta luôn có:        $(a+b+c+d)^2>8(ac+bd)          (1)$ Lời giải Đề bài:    Cho $b>c>d$. Chứng minh rằng với mọi $a$ ta luôn có:        $(a+b+c+d)^2>8(ac+bd)          (1)$ Lời giải Giải  Xét tam thức bậc hai … [Đọc thêm...] vềĐề bài:    Cho $b>c>d$. Chứng minh rằng với mọi $a$ ta luôn có:        $(a+b+c+d)^2>8(ac+bd)          (1)$

Đề bài: Cho $\begin{cases}a>0 \\ a^{2}=bc \\ a+b+c=abc \end{cases}$Chứng minh rằng: $b,c>0$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $\begin{cases}a>0 \\ a^{2}=bc \\ a+b+c=abc \end{cases}$Chứng minh rằng: $b,c>0$. Lời giải Đề bài: Cho $\begin{cases}a>0 \\ a^{2}=bc \\ a+b+c=abc \end{cases}$Chứng minh rằng: $b,c>0$. Lời giải Ta có: $\begin{cases}a>0                                        ,(1) \\ a^{2}=bc             … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}a>0 \\ a^{2}=bc \\ a+b+c=abc \end{cases}$Chứng minh rằng: $b,c>0$.

Đề bài: Tìm tất cả các giá trị thực của $x$ sao cho bất đẳng thức sau đúng với mọi số không âm $a,b,c$$[a^2+b^2+(x-1)c^2]\times [a^2+c^2+(x-1)b^2]\times [b^2+c^2+(x-1)a^2]$ $\leq (a^2+bcx)(b^2+acx)(c^2+abx)   (1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Tìm tất cả các giá trị thực của $x$ sao cho bất đẳng thức sau đúng với mọi số không âm $a,b,c$$[a^2+b^2+(x-1)c^2]\times [a^2+c^2+(x-1)b^2]\times [b^2+c^2+(x-1)a^2]$ $\leq (a^2+bcx)(b^2+acx)(c^2+abx)   (1)$ Lời giải Đề bài: Tìm tất cả các giá trị thực của $x$ sao cho bất đẳng thức sau đúng với mọi số không âm $a,b,c$$[a^2+b^2+(x-1)c^2]\times … [Đọc thêm...] vềĐề bài: Tìm tất cả các giá trị thực của $x$ sao cho bất đẳng thức sau đúng với mọi số không âm $a,b,c$$[a^2+b^2+(x-1)c^2]\times [a^2+c^2+(x-1)b^2]\times [b^2+c^2+(x-1)a^2]$ $\leq (a^2+bcx)(b^2+acx)(c^2+abx)   (1)$

Đề bài: $a/$Cho $\begin{cases}x+y\geq 2 \\ x,y\geq 0 \\n\in N^{*}\end{cases}$Chứng minh: $x^{n+1}+y^{n+1}\geq x^{n}+y^{n}$$b/$Cho $\begin{cases} \\a,b> 0 \\n\in N^{*}\end{cases}$Chứng minh: $\frac{a^{n}+b^{n}}{2}\geq \left ( \frac{a+b}{2} \right )^{n}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: $a/$Cho $\begin{cases}x+y\geq 2 \\ x,y\geq 0 \\n\in N^{*}\end{cases}$Chứng minh: $x^{n+1}+y^{n+1}\geq x^{n}+y^{n}$$b/$Cho $\begin{cases} \\a,b> 0 \\n\in N^{*}\end{cases}$Chứng minh: $\frac{a^{n}+b^{n}}{2}\geq \left ( \frac{a+b}{2} \right )^{n}$ Lời giải Đề bài: $a/$Cho $\begin{cases}x+y\geq 2 \\ x,y\geq 0 \\n\in N^{*}\end{cases}$Chứng minh: … [Đọc thêm...] vềĐề bài: $a/$Cho $\begin{cases}x+y\geq 2 \\ x,y\geq 0 \\n\in N^{*}\end{cases}$Chứng minh: $x^{n+1}+y^{n+1}\geq x^{n}+y^{n}$$b/$Cho $\begin{cases} \\a,b> 0 \\n\in N^{*}\end{cases}$Chứng minh: $\frac{a^{n}+b^{n}}{2}\geq \left ( \frac{a+b}{2} \right )^{n}$

Đề bài: Cho tam giác $ABC$, có $b \ge c$. Chứng minh rằng :$l_b \le l_c$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$, có $b \ge c$. Chứng minh rằng :$l_b \le l_c$ Lời giải Đề bài: Cho tam giác $ABC$, có $b \ge c$. Chứng minh rằng :$l_b \le l_c$ Lời giải ${l_b} \le {l_c} \Leftrightarrow {l_b}^2 \le {l_c}^2$    $\begin{array}{l} \Leftrightarrow \frac{{ca}}{{{{\left( {c + a} … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$, có $b \ge c$. Chứng minh rằng :$l_b \le l_c$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 7
  • Trang 8
  • Trang 9
  • Trang 10
  • Trang 11
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.