• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.

Bat dang thuc

Lời giải

Đề bài:
Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.
Lời giải

adsense

Theo bất đẳng thức Côsi ta có:
$\sqrt[4]{1-x^2}=\sqrt[4]{1-x}.\sqrt[4]{1+x}\leq \frac{\sqrt{1-x}+\sqrt{1+x}}{2}  (1)$
$\sqrt[4]{1-x}=\sqrt[4]{1-x}.1\leq \frac{\sqrt{1-x}+1}{2}   (2)$
$\sqrt[4]{1+x}=\sqrt[4]{1+x}.1\leq \frac{\sqrt{1+x}+1}{2}   (3)$
Cộng từng vế của $(1),(2),(3)$ ta có: $S\leq 1+\sqrt{1+x}+\sqrt{1-x} (4)$
Dấu $”=”$ trong $(4)$ xảy ra $\Leftrightarrow$ đồng thời có dấu bằng trong $(1),(2),(3) \Leftrightarrow x=0$.
Lại có: $\sqrt[]{1-x}=\sqrt[]{1-x}.1\leq \frac{1-x+1}{2}   ;\sqrt[]{1+x}=\sqrt[]{1+x}.1\leq \frac{1+x+1}{2} $
Từ đó: $\sqrt{1+x}+\sqrt{1-x}\leq 2  (5)$.
Dấu $”=”$ trong $(5)$ xảy ra khi và chỉ khi $x=0$. Từ $(4),(5)$ đi đến $S\leq 3  (6)  \Rightarrow $ đpcm.
Dấu $”=”$ trong $(6)$ xảy ra$\Leftrightarrow x=0$

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: Cho $x,y,z$ là các số thực thỏa mãn $xy+yz+zx=15$Tìm các giá trị nhỏ nhất của $Q=x^4+y^4+z^4$
  2. Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \(\frac{a}{b}+\frac{b}{a}\geq 2\)
  3. Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất
  4. Đề bài: Cho $n,m\in N$ và $   n,m\geq 1$. chứng minh rằng:   $\sin^m x.\cos^nx\leq \sqrt{\frac{m^mn^n}{(n+m)^{n+m}}}$
  5. Đề bài: Với $a,b,c>0$ chứng minh rằng:     $\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}$.
  6. Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$\frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ca}+\frac{1}{c^{2}+ab} \leq \frac{a+b+c}{2abc}$
  7. Đề bài:  Tìm tất cả các giá trị của $x$ để biểu thức sau đạt giá trị nhỏ nhất:                         \(P = x\left( {1 – x} \right)\left( {x – 3} \right)\left( {4 – x} \right)\)
  8. Đề bài: Cho $a,b,c$  dương thay đổi. Chứng minh:     $\left ( \frac{a}{b}  \right )^ \frac{3}{2}+\left ( \frac{b}{c}  \right )^ \frac{3}{2} +\left ( \frac{c}{a}  \right )^ \frac{3}{2} \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}   $
  9. Đề bài: Cho \(xy=4 (x>0, y>0)\). Tìm giá trị nhỏ nhất của:1)    \(x^{2}+y^{2}\)2)    \(x^{4}+y^{4}\)3)    \((x+1)(4y+3)\)
  10. Đề bài: $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$
  11. Đề bài: Chứng minh rằng : $abc(a+b)(b+c)(c+a)\leq \frac{8}{729}$. Trong đó $a,b,c $ là các số thực không âm thỏa mãn $a+b+c=1$
  12. Đề bài: Với $a,b,c>0$ và $a+b+c\leq 1$ chứng minh rằng:     $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\geq 9$.
  13. Đề bài: Tìm giá trị lớn nhất của:$y=\sin^{2} x.\cos ^{6}x$
  14. Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\)
  15. Đề bài: Dùng bất đẳng thức Cô-si, tìm GTNN:a)$y=x+\frac{3}{x}; (x>0) $                                               b) GTNN $y=x+\frac{2}{x-3}; (x>3) $c) $y=5^{x+1}+5^{x-2} $                                                d) $y=\frac{2 x^{2}+3x+7 }{x} . (x>0)$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.