• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức cơ bản

Đề bài: Chứng minh: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2}) \forall a,b,c\in R\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2}) \forall a,b,c\in R\). Lời giải Ta có: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2})\)\(\Leftrightarrow a^{2}+b^{2}+c^{2}+2(ab+bc+ac)\leq 3(a^{2}+b^{2}+c^{2})\)\(\Leftrightarrow 2(ab+bc+ca)\leq 2(a^{2}+b^{2}+c^{2})\)\(\Leftrightarrow (a^{2}+b^{2}-2ab)+(b^{2}+c^{2}-2bc)+(c^{2}+a^{2}-2ac)\geq 0\)\(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2}) \forall a,b,c\in R\).

Đề bài: Chứng minh:a) nếu $x\geq y \geq  0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh:a) nếu $x\geq y \geq  0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$ Lời giải a) Với $x \geq y \geq 0$ ta có:$\frac{x}{1+x} \geq \frac{y}{1+y} \Leftrightarrow  x(1+y)\geq y(1+x)\Leftrightarrow  x+xy \geq y+xy \Leftrightarrow x \geq y  $ ( đúng)b) Vì $|a-b|\leq |a|+|b|$ … [Đọc thêm...] vềĐề bài: Chứng minh:a) nếu $x\geq y \geq  0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$

Đề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\). Lời giải Ta có: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\)\(\Leftrightarrow \frac{a^{3}}{a}+\frac{b^{3}}{a}+\frac{a^{3}}{b}+\frac{b^{3}}{b}\geq a^{2}+2ab+b^{2}\)\(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\).

Đề bài: $1$. Giải bất phương trình: ${3^{x + 1}} – {2^{2x + 1}} – {12^{\frac{x}{2}}} < 0$$2$. Cho $a, b, c$ là ba số thực bất kỳ thỏa mãn $a + b + c = 3$. Chứng minh rằng: ${a^4} + {b^4} + {c^4} \ge {a^3} + {b^3} + {c^3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: $1$. Giải bất phương trình: ${3^{x + 1}} - {2^{2x + 1}} - {12^{\frac{x}{2}}} < 0$$2$. Cho $a, b, c$ là ba số thực bất kỳ thỏa mãn $a + b + c = 3$. Chứng minh rằng: ${a^4} + {b^4} + {c^4} \ge {a^3} + {b^3} + {c^3}$ Lời giải $1.{3^{x + 1}} - {2^{2x + 1}} - {12^{\frac{x}{2}}} $\Leftrightarrow 3-2(\frac{4}{3})^x-(\frac{\sqrt{12}}{3})^xĐặt … [Đọc thêm...] vềĐề bài: $1$. Giải bất phương trình: ${3^{x + 1}} – {2^{2x + 1}} – {12^{\frac{x}{2}}} < 0$$2$. Cho $a, b, c$ là ba số thực bất kỳ thỏa mãn $a + b + c = 3$. Chứng minh rằng: ${a^4} + {b^4} + {c^4} \ge {a^3} + {b^3} + {c^3}$

Đề bài: Chứng tỏ rằng:   $ x^2 – 6x + 5 \ge – 4       \forall x $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng tỏ rằng:   $ x^2 - 6x + 5 \ge - 4       \forall x $ Lời giải Ta có:   $ {x^2} - 6x + 5 = {\left( {x - 3} \right)^2} - 4 \ge  - 4,\forall x $ Dấu “=” xảy ra  $  \Leftrightarrow x = 3 $ ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng tỏ rằng:   $ x^2 – 6x + 5 \ge – 4       \forall x $

Đề bài: Cho \(a>0\). Chứng minh rằng: \(\sqrt{a}+\sqrt{a+2}<2\sqrt{a+1}\)   (1)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho \(a>0\). Chứng minh rằng: \(\sqrt{a}+\sqrt{a+2}<2\sqrt{a+1}\)   (1) Lời giải Ta có: (1) \(\Leftrightarrow (\sqrt{a}+\sqrt{a+2})^{2}\leq 4(a+1)\)\(\Leftrightarrow a+a+2+2\sqrt{a(a+2)}\leq 4(a+1)\)\(\Leftrightarrow 2\sqrt{a(a+2)}\leq 2(a+1) \\\Leftrightarrow \sqrt{a(a+2)}\leq a+1\)\(\Leftrightarrow a(a+2)\leq (a+1)^{2} \\\Leftrightarrow 2a+a^{2}\leq … [Đọc thêm...] vềĐề bài: Cho \(a>0\). Chứng minh rằng: \(\sqrt{a}+\sqrt{a+2}<2\sqrt{a+1}\)   (1)

Đề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}<\frac{a+c}{b+d}\leq \frac{c}{d}              d) m>n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $ Lời giải HD: dùng định nghĩaThêm lời giải chi tiết ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}<\frac{a+c}{b+d}\leq \frac{c}{d}              d) m>n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $

Đề bài: Chứng minh rằng  $ 200^{300} > 300^{200} $ 

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng  $ 200^{300} > 300^{200} $  Lời giải Ta có:$ \begin{array}{l}{200^{300}} = {({200^3})^{100}} = {8000000^{100}}\\{300^{200}} = {({300^2})^{100}} = {90000^{100}}\end{array} $  $  \Rightarrow  $  đpcm. ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng minh rằng  $ 200^{300} > 300^{200} $ 

Đề bài: Chứng minh rằng: \(a^{2}+b^{2}+1\geq ab+a+b  \forall a,b,c\in R\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng: \(a^{2}+b^{2}+1\geq ab+a+b  \forall a,b,c\in R\). Lời giải Ta có: \(a^{2}+b^{2}+1\geq ab+a+b \\\Leftrightarrow 2a^{2}+2b^{2}+2\geq 2ab+2a+2b\)\(\Leftrightarrow a^{2}-2ab+b^{2}+a^{2}-2a+1+b^{2}-2b+1\geq 0\)\(\Leftrightarrow (a-b)^{2}+(a-1)^{2}+(b-1)^{2}\geq 0\) đúng, \(\forall a,b,c\in R\).Dấu bằng xảy ra khi $\left\{ \begin{array}{l} … [Đọc thêm...] vềĐề bài: Chứng minh rằng: \(a^{2}+b^{2}+1\geq ab+a+b  \forall a,b,c\in R\).

Đề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$ Lời giải hướng dẫn: dùng bất đẳng thức giá trị tuyệt đốiThêm lời giải chi tiết ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$

  • Trang 1
  • Trang 2
  • Trang 3
  • Interim pages omitted …
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.