Đề bài: Chứng minh với mọi $x,y,z$ không âm ta luôn có: $xyz \geq (x+y-z)(x+z-y)(y+z-x) (1)$ Lời giải Giải Để ý: Với $x,y,z$ không âm thì trong ba số $a=(y+z-x), b=(x+z-y), c=(x+y-z)$ không thể có quá một số âmGiả sử có hai số âm, do tính bình đẳng của $x,y,z$ giả sử $\begin{cases}x+y-zCộng vế theo vế ta có: $2x+ Nếu … [Đọc thêm...] vềĐề bài: Chứng minh với mọi $x,y,z$ không âm ta luôn có: $xyz \geq (x+y-z)(x+z-y)(y+z-x) (1)$
Bất đẳng thức cơ bản
Đề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$
Đề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$ Lời giải Ta có:$\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} \ge \frac{{2{\rm{a - b}}}}{{\rm{3}}}\Leftrightarrow 3a^3\ge a(a^2+ab+b^2)+a^3-b^3\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$
Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(a^{3}+b^{3}\geq a^{2}b+ab^{2}\) (1)
Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(a^{3}+b^{3}\geq a^{2}b+ab^{2}\) (1) Lời giải Ta có: (1) \(\Leftrightarrow (a^{3}+b^{3})-(a^{2}b+ab^{2})\geq 0 \\\Leftrightarrow (a^{3}-a^{2}b)-(ab^{2}-b^{3})\geq 0\) \(\Leftrightarrow a^{2}(a-b)-b^{2}(a-b)\geq 0 \\\Leftrightarrow (a^{2}-b^{2})(a-b)\geq 0\) \(\Leftrightarrow (a-b)^{2}(a+b)\geq 0\) đúng Vậy ta … [Đọc thêm...] vềĐề bài: Cho \(a,b>0\). Chứng minh rằng: \(a^{3}+b^{3}\geq a^{2}b+ab^{2}\) (1)
Đề bài: Giả sử $a,b,\alpha > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$ (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$ (2)
Đề bài: Giả sử $a,b,\alpha > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$ (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$ (2) Lời giải ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Giả sử $a,b,\alpha > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$ (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$ (2)