• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$ Lời giải Ta có thể lựa chọn một trong hai cách sau:Cách $1$: Sử dụng mối liên hệ giữa các góc, ta biến đổi:    $VT=\sin (\frac{\pi}{2}-\frac{\pi}{12})+\sin \frac{\pi}{12}=\cos \frac{\pi}{12}+\sin \frac{\pi}{12}=\sqrt{2}\sin (\frac{\pi}{12}+\frac{\pi}{4})$           $=\sqrt{2}\sin … [Đọc thêm...] vềĐề bài: Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$

Đề bài: Chứng minh rằng: Nếu $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng: Nếu $0 … [Đọc thêm...] vềĐề bài: Chứng minh rằng: Nếu $0

Đề bài: Chứng minh rằng nếu  $08$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng nếu  $0  8si}}{{\rm{n}}^{\rm{2}}}{\rm{x ( cosx  -  sinx)}}$$ \Leftrightarrow c{\rm{osx}}\left( {{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x +  si}}{{\rm{n}}^{\rm{2}}}x} \right) > 8{\rm{si}}{{\rm{n}}^{\rm{2}}}x(c{\rm{osx  -  sinx)}}$$ \Leftrightarrow c{\rm{o}}{{\rm{s}}^{\rm{3}}}{\rm{x  +  8si}}{{\rm{n}}^{\rm{3}}}x > … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu  $08$

Đề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$ Lời giải Cách $1$:Ta biến đổi tương đương về đẳng thức sau:        $ \displaystyle (1+\frac{a+b}{c})+(1+\frac{b+c}{a})+(1+\frac{a+c}{b})\geq 9$       $ \displaystyle \Leftrightarrow \frac{a+b+c}{c}+\frac{a+b+c}{a}+\frac{a+b+c}{b}\geq 9$       … [Đọc thêm...] vềĐề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$

Đề bài:  Biết rằng:  $3x^2+4xy+3y^2=14.$ Chứng minh $\frac{14}{5} \leq x^2+y^2 \leq 14$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài:  Biết rằng:  $3x^2+4xy+3y^2=14.$ Chứng minh $\frac{14}{5} \leq x^2+y^2 \leq 14$ Lời giải Đặt $Q=x^2+y^2$$\bullet$ Để ý: $14-Q=2(x+y)^2 \geq 0 \Leftrightarrow Q \leq 14$.Dấu đẳng thức có khi và chỉ khi:$\left\{ \begin{array}{l} x+y=0\\ 3x^2+4xy+3y^2=14 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=-y\\ x^2=7 \end{array} \right. … [Đọc thêm...] vềĐề bài:  Biết rằng:  $3x^2+4xy+3y^2=14.$ Chứng minh $\frac{14}{5} \leq x^2+y^2 \leq 14$

Đề bài: Cho $a \ge 1,b \ge 1$. Chứng minh $\sqrt {{{\log }_2}a}  + \sqrt {{{\log }_2}b}  \ge 2\sqrt {{{\log }_2}\left( {\frac{{a + b}}{2}} \right)} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $a \ge 1,b \ge 1$. Chứng minh $\sqrt {{{\log }_2}a}  + \sqrt {{{\log }_2}b}  \ge 2\sqrt {{{\log }_2}\left( {\frac{{a + b}}{2}} \right)} $ Lời giải $x \ge 0,y \ge 0 \Rightarrow 2\sqrt {xy}  \le x + y \Rightarrow {\left( {\sqrt x  + \sqrt y } \right)^2} \le 2\left( {x + y} \right) $$\Rightarrow $$\sqrt x  + \sqrt y  \le \sqrt 2 .\sqrt {x + y} $. Khi đó … [Đọc thêm...] vềĐề bài: Cho $a \ge 1,b \ge 1$. Chứng minh $\sqrt {{{\log }_2}a}  + \sqrt {{{\log }_2}b}  \ge 2\sqrt {{{\log }_2}\left( {\frac{{a + b}}{2}} \right)} $

Đề bài: Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ ab$  nên  $\frac{c\left ( a-b \right )}{b\left ( b+c \right )}>0$ điều phải chứng minhb) Chứng minh tương tự ========= Chuyên mục: Bất đẳng thức cơ bản … [Đọc thêm...] vềĐề bài: Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a

Đề bài:  Giả sử $x,y$ liên hệ với nhau bởi hệ thức $3x^2+4xy+3y^2=14$. Chứng minh $\frac{14}{5} \leq x,y \leq 14$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài:  Giả sử $x,y$ liên hệ với nhau bởi hệ thức $3x^2+4xy+3y^2=14$. Chứng minh $\frac{14}{5} \leq x,y \leq 14$ Lời giải Từ giả thiết bài toán suy ra $x,y$ không đồng thời bằng $0$. Gọi $Q(x,y)=x^2+y^2$Trường hợp $1: x=0$ hoặc $y=0$ dễ dàng suy ra $Q=\frac{14}{3}                          (1)$Trường hợp $2: xy \neq 0$, đặt $y=x.t, t \in R$ ta … [Đọc thêm...] vềĐề bài:  Giả sử $x,y$ liên hệ với nhau bởi hệ thức $3x^2+4xy+3y^2=14$. Chứng minh $\frac{14}{5} \leq x,y \leq 14$

Đề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$ Lời giải Gọi $k > 0$ là cộng sai của cấp số cộng, ta có $b = a + k,c = a + 2k,d = a + 3k$ và điều kiện $2m \ge \left| {a{\rm{d  -  bc}}} \right| = \left| {a\left( {a + 3k} \right) - … [Đọc thêm...] vềĐề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$

Đề bài: Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen) Lời giải $1/$ Bài toán $\Leftrightarrow \left ( 2+a^{2}+b^{2} \right )\left ( 1+ab \right )\geq 2\left ( 1+a^{2} \right )\left ( 1+b^{2} \right … [Đọc thêm...] vềĐề bài: Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.