• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài:  Giả sử $x,y$ liên hệ với nhau bởi hệ thức $3x^2+4xy+3y^2=14$. Chứng minh $\frac{14}{5} \leq x,y \leq 14$

Đề bài:  Giả sử $x,y$ liên hệ với nhau bởi hệ thức $3x^2+4xy+3y^2=14$. Chứng minh $\frac{14}{5} \leq x,y \leq 14$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài:  Giả sử $x,y$ liên hệ với nhau bởi hệ thức $3x^2+4xy+3y^2=14$. Chứng minh $\frac{14}{5} \leq x,y \leq 14$

Bat dang thuc

Lời giải

Từ giả thiết bài toán suy ra $x,y$ không đồng thời bằng $0$. Gọi $Q(x,y)=x^2+y^2$
Trường hợp $1: x=0$ hoặc $y=0$ dễ dàng suy ra $Q=\frac{14}{3}                          (1)$
Trường hợp $2: xy \neq 0$, đặt $y=x.t, t \in R$ ta có
$\frac{Q}{14}=\frac{x^2(1+t^2)}{x^2(3+4t+3t^2)} \Leftrightarrow \frac{Q}{14}=\frac{1+t^2}{3+4t+3t^2}        (2)$
Để ý: $3t^2+4t+3>0, \forall t \in R$ nên $(2) \Leftrightarrow Q(3t^2+4t+3)=14(1+t^2)$
$\Leftrightarrow  (3Q-14)t^2+4Qt+3Q-14=0                               (3)$
Trường hợp $1a) 3Q-14=0 \Leftrightarrow Q=\frac{14}{3}$, khi đó $(3) \Leftrightarrow 4Qt=0 \Leftrightarrow t=0$
          $\Rightarrow y=0$, trái với giả thiết $x,y \neq 0$
Trường hợp $1b) 3Q-14 \neq 0$, Gọi $\Delta’=4Q^2-(3Q-14)^2=(5Q-14)(14-Q)$
Rõ ràng tập giá trị của $Q$ là tập nghiệm của $\Delta’ \geq 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{\frac{14}{5} \leq Q \leq \frac{14}{3}  }\\
{\frac{14}{3}\leq Q \leq 14 }
\end{array}} \right.               (4)$
Dấu đẳng thức có khi và chỉ khi $t=\frac{2Q}{3Q-14}                  (5)$
Do vậy thay vào $(5)$ sẽ có:
+ $Q=\frac{14}{5}$ đạt được khi và chỉ khi $t=-1 \Leftrightarrow x=-y \neq 0               (6.1)$
+ $Q=14$ đạt được khi và chỉ khi $t=1 \Leftrightarrow x=y \neq 0                            (6.2)$
Từ $(1),(4),(6.1),(6.2)$ kết luận: $\frac{14}{5} \leq Q \leq 14$           

=========
Chuyên mục: Bất đẳng thức cơ bản

Bài liên quan:

  1. Đề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$
  2. Đề bài: Cho \(x,y \) dương . Chứng minh: \(\frac{1}{(1+x)^{2}}+\frac{1}{(1+y)^{2}}\geq \frac{1}{1+xy}\)
  3. Đề bài: Cho $a \le 6,b \le  – 8,c \le 3$. Chứng minh rằng với mọi $x \ge 1$ ta đều đó $x^4-ax^2-bx\geq c$
  4. Đề bài: Chứng minh rằng nếu  $08$
  5. Đề bài: Cho $a \ge 1,b \ge 1$. Chứng minh $\sqrt {{{\log }_2}a}  + \sqrt {{{\log }_2}b}  \ge 2\sqrt {{{\log }_2}\left( {\frac{{a + b}}{2}} \right)} $
  6. Đề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$
  7. Đề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$
  8. Đề bài: Giả sử $a,b,\alpha  > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$         (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$        (2)
  9. Đề bài: Chứng minh:a) nếu $x\geq y \geq  0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$
  10. Đề bài: $1$. Giải bất phương trình: ${3^{x + 1}} – {2^{2x + 1}} – {12^{\frac{x}{2}}} < 0$$2$. Cho $a, b, c$ là ba số thực bất kỳ thỏa mãn $a + b + c = 3$. Chứng minh rằng: ${a^4} + {b^4} + {c^4} \ge {a^3} + {b^3} + {c^3}$
  11. Đề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}<\frac{a+c}{b+d}\leq \frac{c}{d}              d) m>n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $
  12. Đề bài: Chứng minh rằng: \(a^{3}+2\geq a^{2}+2\sqrt{a}\) với \(a\geq 0\)   (1)
  13. Đề bài: Cho $a+b+c\neq 0$,hãy chứng minh:$1/a^{3}+ b^{3} + c^{3} =3abc+\left (  a+b+c  \right )\left (  a^{2}+ b^{2} + c^{2} -ab-bc-ca \right )$ $2/\frac{ a^{3}+ b^{3} + c^{3} -3abc}{  a+b+c }\geq 0$ 
  14. Đề bài: Cho $a+b=2$.Hãy chứng minh:$1/ a^{2}+ b^{2} \geq 2$   $2/ a^{4}+ b^{4} \geq 2$ 
  15. Đề bài: Chứng minh với mọi $x,y,z$:a) $|x+y+z|\leq|x|+|y|+|z|                     b)|x-z|\leq |x-y|+|y-z|$

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.